(file) Return to addradial.py CVS log (file) (dir) Up to [Development] / JSOC / proj / globalhs / sosh

Diff for /JSOC/proj/globalhs/sosh/addradial.py between version 1.4 and 1.5

version 1.4, 2019/03/04 17:33:22 version 1.5, 2019/04/08 16:52:18
Line 52  except:
Line 52  except:
   pixels=1000   pixels=1000
  
 try: try:
     distobs
   except:
     distobs=220.0
   
   try:
     xoffset
   except:
     xoffset=0.0
   
   try:
     yoffset
   except:
     yoffset=0.0
   
   try:
     pangle
   except:
     pangle=0.0
   
   try:
   figsize   figsize
 except: except:
   figsize=5   figsize=5
Line 62  sosh.icolshift=colorshift
Line 82  sosh.icolshift=colorshift
  
 sosh.loadmodel() sosh.loadmodel()
  
 #(phi,theta)=sosh.image2sphere(xpixels=pixels,ypixels=pixels,bangle=bangle)  (r, theta, phi) = sosh.image2rtheta(xpixels=pixels,ypixels=pixels,distobs=distobs,pangle=pangle,xoffset=xoffset,yoffset=yoffset)
 (r, theta) = sosh.image2rtheta(xpixels=pixels,ypixels=pixels)  
 x=np.cos(theta) x=np.cos(theta)
 phi=0.0*theta  
 (nx,ny)=x.shape (nx,ny)=x.shape
 if (rsurf < 1.0): if (rsurf < 1.0):
   newind = (r <= rsurf)   newind = (r <= rsurf)
   r.mask = np.logical_not(newindex)    r.mask = np.logical_not(newind)
     x.mask = np.logical_not(newind)
  
 #modeparms=np.loadtxt('mdi.average.modes') #modeparms=np.loadtxt('mdi.average.modes')
 # use model values instead of measured values # use model values instead of measured values
Line 183  for i in range(abs(nmodes)):
Line 202  for i in range(abs(nmodes)):
  
   if (i == 0):   if (i == 0):
     if (m > 0):     if (m > 0):
       phi[:,int(nx/2):nx]=(np.pi/4)/m        phi+=(np.pi/4)/m
       phi[:,0:int(nx/2)]=(np.pi/4)/m + np.pi  #      phi[:,int(nx/2):nx]=(np.pi/4)/m
     else:  #      phi[:,0:int(nx/2)]=(np.pi/4)/m + np.pi
       phi=0.0*theta  #    else:
   #      phi=0.0*theta
   ylm=y*np.exp(1.0j*signedm*phi)   ylm=y*np.exp(1.0j*signedm*phi)
   dylmt=-np.sin(theta)*dy*np.exp(1.0j*signedm*phi)   dylmt=-np.sin(theta)*dy*np.exp(1.0j*signedm*phi)
   dylmp=1.0j*signedm*y*np.exp(1.0j*signedm*phi)   dylmp=1.0j*signedm*y*np.exp(1.0j*signedm*phi)


Legend:
Removed from v.1.4  
changed lines
  Added in v.1.5

Karen Tian
Powered by
ViewCVS 0.9.4