(file) Return to smarp.c CVS log (file) (dir) Up to [Development] / JSOC / proj / sharp / apps

   1 mbobra 1.1 /*
   2             *  smarp.c   
   3             *
   4             *	This module creates the pipeline for Space Weather MDI Active Region Patches (SMARPs).
   5             *	It is a modified version of sharp.c, created by Xudong Sun and Monica Bobra.
   6             *	It takes the mdi.mtarp series to create the following:
   7             *
   8             *      Series 1: mdi.smarp_cea_96m
   9             *	          CEA remapped magnetogram, bitmap, continuum (same size in map coordinate)
  10             *                Space weather indices based on line-of-sight magnetogram in the cutout series
  11             *
  12             *      Series 2: mdi.smarp_96m
  13             *	          cutouts of magnetogram, bitmap, continuum, (TARP defined, various sizes in CCD pixels)
  14             *                Space weather indices based on line-of-sight magnetogram in the cutout series
  15             *           
  16             *	Author:
  17             *		Monica Bobra; Xudong Sun
  18             *
  19             *	Version:
  20             *              v0.0 9 February 2018 Monica Bobra
  21             *
  22 mbobra 1.1  *	Notes:
  23             *		v0.0 No explicit notes
  24             *
  25             *	Example Call:
  26             *      > smarp "mharp=mdi.Mtarp[13643][2010.10.14_20:48:00_TAI]" "sharp_cea=su_mbobra.smarp_cea_96m" cont="mdi.fd_Ic_interp[2010.10.14_20:48:00_TAI]" "sharp_cut=su_mbobra.smarp_96m"
  27             *
  28             */
  29            
  30            #include <stdio.h>
  31            #include <stdlib.h>
  32            #include <time.h>
  33            #include <sys/time.h>
  34            #include <math.h>
  35            #include <string.h>
  36            #include "jsoc_main.h"
  37            #include "astro.h"
  38            #include "fstats.h"
  39            #include "cartography.c"
  40            #include "fresize.h"
  41            #include "finterpolate.h"
  42            #include "img2helioVector.c"
  43 mbobra 1.1 #include "copy_me_keys.c"
  44            #include "errorprop.c"
  45            #include "smarp_functions.c"
  46            
  47            //#include <mkl.h> // Comment out mkl.h, which can only run on solar3
  48            #include <mkl_blas.h>
  49            #include <mkl_service.h>
  50            #include <mkl_lapack.h>
  51            #include <mkl_vml_functions.h>
  52            #include <omp.h>
  53            
  54            #define PI              (M_PI)
  55            #define RADSINDEG	(PI/180.)
  56            #define RAD2ARCSEC	(648000./M_PI)
  57            #define SECINDAY	(86400.)
  58            #define FOURK		(1024)
  59            #define FOURK2          (1048576)
  60            
  61            #define ARRLENGTH(ARR) (sizeof(ARR) / sizeof(ARR[0]))
  62            
  63            // FOR HMI: Nyqvist rate at disk center is 0.03 degree. Oversample above 0.015 degree
  64 mbobra 1.1 // FOR HMI: Nyqvist rate at disk center is 0.12 degree. Oversample above 0.06 degree
  65            #define NYQVIST		(0.06)
  66            
  67            // Maximum variation of LONDTMAX-LONDTMIN
  68            #define MAXLONDIFF	(1.2e-4)
  69            
  70            // Some other things
  71            #ifndef MIN
  72            #define MIN(a,b) (((a)<(b)) ? (a) : (b))
  73            #endif
  74            #ifndef MAX
  75            #define MAX(a,b) (((a)>(b)) ? (a) : (b))
  76            #endif
  77            
  78            #define DIE(msg) {fflush(stdout); fprintf(stderr,"%s, status=%d\n", msg, status); return(status);}
  79            #define SHOW(msg) {printf("%s", msg); fflush(stdout);}
  80            
  81            #define kNotSpecified "Not Specified"
  82            
  83            // Macros for WCS transformations.  assume crpix1, crpix2 = CRPIX1, CRPIX2, sina,cosa = sin and cos of CROTA2 resp.
  84            // and crvalx and crvaly are CRVAL1 and CRVAL2, cdelt = CDELT1 == CDELT2, then
  85 mbobra 1.1 // PIX_X and PIX_Y are CCD pixel addresses, WX and WY are arc-sec W and N on the Sun from disk center.
  86            #define PIX_X(wx,wy) ((((wx-crvalx)*cosa + (wy-crvaly)*sina)/cdelt)+crpix1)
  87            #define PIX_Y(wx,wy) ((((wy-crvaly)*cosa - (wx-crvalx)*sina)/cdelt)+crpix2)
  88            #define WX(pix_x,pix_y) (((pix_x-crpix1)*cosa - (pix_y-crpix2)*sina)*cdelt+crvalx)
  89            #define WY(pix_x,pix_y) (((pix_y-crpix2)*cosa + (pix_x-crpix1)*sina)*cdelt+crvaly)
  90            #define XSCALE			0.12
  91            #define YSCALE			0.12
  92            #define NBIN			3
  93            #define INTERP			0
  94            #define dpath    "/home/jsoc/cvs/Development/JSOC"
  95            
  96            /* ========================================================================================================== */
  97            
  98            // Space weather keywords
  99            struct swIndex {
 100                float mean_vf;
 101                float count_mask;
 102                float absFlux;
 103                float mean_derivative_bz;
 104                float Rparam;
 105            };
 106 mbobra 1.1 
 107            // Mapping method
 108            enum projection {
 109            	carree,
 110            	cassini,
 111            	mercator,
 112            	cyleqa,
 113            	sineqa,
 114            	gnomonic,
 115            	postel,
 116            	stereographic,
 117            	orthographic,
 118            	lambert
 119            };
 120            
 121            // WSC code
 122            char *wcsCode[] = {"CAR", "CAS", "MER", "CEA", "GLS", "TAN", "ARC", "STG",
 123            	"SIN", "ZEA"};
 124            
 125            // Ephemeris information
 126            struct ephemeris {
 127 mbobra 1.1 	double disk_lonc, disk_latc;
 128            	double disk_xc, disk_yc;
 129            	double rSun, asd, pa;
 130            };
 131            
 132            // Mapping information
 133            struct mapInfo {
 134            	float xc, yc;		// reference point: center
 135            	int nrow, ncol;		// size
 136            	float xscale, yscale;	// scale
 137            	int nbin;
 138            	enum projection proj;	// projection method
 139            	struct ephemeris ephem;		// ephemeris info
 140            	float *xi_out, *zeta_out;	// coordinate on full disk image to sample at
 141            };
 142            
 143            /* ========================================================================================================== */
 144            
 145            /* Get all input data series */
 146            int getInputRS(DRMS_RecordSet_t **mharpRS_ptr, char *mharpQuery);
 147            
 148 mbobra 1.1 /* Get other data series */
 149            int getInputRS_aux(DRMS_RecordSet_t **inRS_ptr, char *inQuery, DRMS_RecordSet_t *harpRS);
 150            
 151            /* Find record from record set with given T_rec */
 152            int getInputRec_aux(DRMS_Record_t **inRec_ptr, DRMS_RecordSet_t *inRS, TIME trec);
 153            
 154            /* Create CEA record */
 155            int createCeaRecord(DRMS_Record_t *mharpRec, DRMS_Record_t *contRec, DRMS_Record_t *sharpRec, struct swIndex *swKeys_ptr);
 156            
 157            /* Mapping single segment, wrapper */
 158            int mapScaler(DRMS_Record_t *sharpRec, DRMS_Record_t *inRec, DRMS_Record_t *harpRec,
 159            			  struct mapInfo *mInfo, char *segName);
 160            
 161            /* Determine reference point coordinate and patch size according to input */
 162            int findPosition(DRMS_Record_t *inRec, struct mapInfo *mInfo);
 163            
 164            /* Get ephemeris information */
 165            int getEphemeris(DRMS_Record_t *inRec, struct ephemeris *ephem);
 166            
 167            /* Compute the coordinates at which the full disk image is sampled */
 168            void findCoord(struct mapInfo *mInfo);
 169 mbobra 1.1 
 170            /* Mapping function */
 171            int performSampling(float *outData, float *inData, struct mapInfo *mInfo, int interpOpt);
 172            
 173            // ===================
 174            
 175            /* Create Cutout record */
 176            int createCutRecord(DRMS_Record_t *mharpRec, DRMS_Record_t *contRec, DRMS_Record_t *sharpRec, struct swIndex *swKeys_ptr);
 177            
 178            /* Get cutout and write segment */
 179            int writeCutout(DRMS_Record_t *outRec, DRMS_Record_t *inRec, DRMS_Record_t *harpRec, char *SegName);
 180            
 181            // ===================
 182            
 183            /* Compute space weather indices */
 184            void computeSWIndex(struct swIndex *swKeys_ptr, DRMS_Record_t *inRec, struct mapInfo *mInfo);
 185            
 186            /* Set space weather indices */
 187            void setSWIndex(DRMS_Record_t *outRec, struct swIndex *swKeys_ptr);
 188            
 189            /* Set all keywords */
 190 mbobra 1.1 void setKeys(DRMS_Record_t *outRec, DRMS_Record_t *mharpRec, struct mapInfo *mInfo);
 191            
 192            // ===================
 193            
 194            /* Nearest neighbor interpolation */
 195            float nnb (float *f, int nx, int ny, double x, double y);
 196            
 197            /* Wrapper for Jesper's rebin code */
 198            void frebin (float *image_in, float *image_out, int nx, int ny, int nbin, int gauss);
 199            
 200            /* ========================================================================================================== */
 201            
 202            /* Cutout segment names, input identical to output */
 203            char *MharpSegs[] = {"magnetogram", "bitmap"};
 204            char *CutSegs[] = {"magnetogram", "bitmap", "continuum"};
 205            char *CEASegs[] = {"magnetogram", "bitmap", "continuum"};
 206            // For BUNIT
 207            char *CutBunits[] = {"Mx/cm^2", " ", "DN/s"};
 208            char *CEABunits[] = {"Mx/cm^2", " ", "DN/s"};
 209            /* ========================================================================================================== */
 210            
 211 mbobra 1.1 char *module_name = "smarp";
 212            
 213            ModuleArgs_t module_args[] =
 214            {
 215                {ARG_STRING, "mharp", kNotSpecified, "Input Mharp series."},
 216                {ARG_STRING, "cont", kNotSpecified, "Input Continuum series."},
 217                {ARG_STRING, "sharp_cea", kNotSpecified, "Output Sharp CEA series."},
 218                {ARG_STRING, "sharp_cut", kNotSpecified, "Output Sharp cutout series."},
 219                {ARG_END}
 220            };
 221            
 222            int DoIt(void)
 223            {
 224                    int errbufstat = setvbuf(stderr, NULL, _IONBF, BUFSIZ);
 225                    int outbufstat = setvbuf(stdout, NULL, _IONBF, BUFSIZ);
 226            	int status = DRMS_SUCCESS;
 227            	int nrecs, irec;
 228            	char *mharpQuery; 
 229                    char *contQuery;
 230            	char *sharpCeaQuery, *sharpCutQuery;
 231            	DRMS_RecordSet_t *mharpRS = NULL;
 232 mbobra 1.1 	DRMS_RecordSet_t *contRS = NULL;
 233            
 234            	/* Get parameters */
 235                
 236            	mharpQuery = (char *) params_get_str(&cmdparams, "mharp");
 237            	sharpCeaQuery = (char *) params_get_str(&cmdparams, "sharp_cea");
 238            	sharpCutQuery = (char *) params_get_str(&cmdparams, "sharp_cut");
 239                    contQuery = (char *) params_get_str(&cmdparams, "cont");
 240            	
 241            	/* Get input data, check everything */
 242                    if (getInputRS(&mharpRS, mharpQuery))
 243                        DIE("Input harp data error.");
 244            	    nrecs = mharpRS->n;
 245            
 246            	if (getInputRS_aux(&contRS, contQuery, mharpRS))
 247            	    DIE("Input continuum data error.");	
 248            
 249            	/* Start */
 250            	
 251            	printf("==============\nStart. %d image(s) in total.\n", nrecs);
 252                
 253 mbobra 1.1 	for (irec = 0; irec < nrecs; irec++) {
 254            		
 255            		/* Records in work */
 256            		
 257            		DRMS_Record_t *mharpRec = NULL;
 258            		DRMS_Record_t *contRec = NULL;
 259            
 260            		mharpRec = mharpRS->records[irec];
 261                            TIME trec = drms_getkey_time(mharpRec, "T_REC", &status);
 262                    
 263            		struct swIndex swKeys;
 264            
 265            		if (getInputRec_aux(&contRec, contRS, trec)) {
 266            			printf("Fetching Continuum failed, image #%d skipped.\n", irec);
 267            			continue;
 268            		}
 269            
 270            	        printf("Obtained all the data \n");
 271                    
 272            		/* Create CEA record */
 273            
 274 mbobra 1.1 		DRMS_Record_t *sharpCeaRec = drms_create_record(drms_env, sharpCeaQuery, DRMS_PERMANENT, &status);
 275            		if (status) {		// if failed
 276            			printf("Creating CEA failed, image #%d skipped.\n", irec);
 277            			continue;
 278            		}
 279            		if (createCeaRecord(mharpRec, contRec, sharpCeaRec, &swKeys)) {		// do the work
 280            			printf("Creating CEA failed, image #%d skipped.\n", irec);
 281            			drms_close_record(sharpCeaRec, DRMS_FREE_RECORD);
 282            			continue;
 283            		}		// swKeys updated here
 284            		
 285            		drms_close_record(sharpCeaRec, DRMS_INSERT_RECORD);
 286            
 287            	        printf("Created CEA record \n");
 288            				
 289            		/* Create Cutout record */
 290            		
 291            		DRMS_Record_t *sharpCutRec = drms_create_record(drms_env, sharpCutQuery, DRMS_PERMANENT, &status);
 292            		if (status) {		// if failed
 293            			printf("Creating cutout failed, image #%d skipped.\n", irec);
 294            			continue;
 295 mbobra 1.1 		}
 296            		
 297            		if (createCutRecord(mharpRec, contRec, sharpCutRec, &swKeys)) {		// do the work
 298            			printf("Creating cutout failed, image #%d skipped.\n", irec);
 299            			drms_close_record(sharpCutRec, DRMS_FREE_RECORD);
 300            			continue;
 301            		}		// swKeys used here
 302            		drms_close_record(sharpCutRec, DRMS_INSERT_RECORD);
 303            	        printf("Created CUT record \n");
 304            		/* Done */
 305            		
 306            		printf("Image #%d done.\n", irec);
 307            		
 308            	} // irec
 309                
 310            	
 311            	drms_close_records(mharpRS, DRMS_FREE_RECORD);
 312            	drms_close_records(contRS, DRMS_FREE_RECORD);
 313            	
 314            	return 0;
 315            	
 316 mbobra 1.1 }	// DoIt
 317            
 318            // ===================================================================
 319            // ===================================================================
 320            // ===================================================================
 321            
 322            /*
 323             * Get input data series, including mHarp and bharp
 324             * Need all records to match, otherwise quit
 325             *
 326             */
 327            
 328            int getInputRS(DRMS_RecordSet_t **mharpRS_ptr, char *mharpQuery)
 329            {
 330            	int status = 0;
 331            	*mharpRS_ptr = drms_open_records(drms_env, mharpQuery, &status);
 332                    if (status || (*mharpRS_ptr)->n == 0) return 1;      
 333            	return 0;	
 334            }
 335            
 336            /*
 337 mbobra 1.1  * Get other data series, check all T_REC are available
 338             */
 339            
 340            int getInputRS_aux(DRMS_RecordSet_t **inRS_ptr, char *inQuery, DRMS_RecordSet_t *harpRS)
 341            {
 342            	
 343            	int status = 0;
 344            	
 345            	*inRS_ptr = drms_open_records(drms_env, inQuery, &status);
 346            	if (status || (*inRS_ptr)->n == 0) return status;
 347            	
 348            	// Check if all T_rec are available, need to match both ways
 349            	int n = harpRS->n, n0 = (*inRS_ptr)->n;
 350            	
 351            	for (int i0 = 0; i0 < n0; i0++) {
 352            		DRMS_Record_t *inRec = (*inRS_ptr)->records[i0];
 353            		TIME trec0 = drms_getkey_time(inRec, "T_REC", &status);
 354            		TIME trec = 0;
 355            		for (int i = 0; i < n; i++) {
 356            			DRMS_Record_t *harpRec = harpRS->records[i];
 357            			trec = drms_getkey_time(harpRec, "T_REC", &status);
 358 mbobra 1.1 			if (fabs(trec0 - trec) < 10) break;
 359            		}
 360            		if (fabs(trec0 - trec) >= 10) return 1;
 361            	}
 362            	
 363            	for (int i = 0; i < n; i++) {
 364            		DRMS_Record_t *harpRec = harpRS->records[i];
 365            		TIME trec = drms_getkey_time(harpRec, "T_REC", &status);
 366            		TIME trec0 = 0;
 367            		for (int i0 = 0; i0 < n0; i0++) {
 368            			DRMS_Record_t *inRec = (*inRS_ptr)->records[i0];
 369            			trec0 = drms_getkey_time(inRec, "T_REC", &status);
 370            			if (fabs(trec0 - trec) < 10) break;
 371            		}
 372            		if (fabs(trec0 - trec) >= 10) return 1;
 373            	}
 374            	
 375            	return 0;
 376            	
 377            }
 378            
 379 mbobra 1.1 /*
 380             * Find record from record set with given T_rec
 381             */
 382            
 383            int getInputRec_aux(DRMS_Record_t **inRec_ptr, DRMS_RecordSet_t *inRS, TIME trec)
 384            {
 385            	
 386            	int status = 0;
 387            	
 388            	int n = inRS->n;
 389            	for (int i = 0; i < n; i++) {
 390            		*inRec_ptr = inRS->records[i];
 391            		TIME trec0 = drms_getkey_time((*inRec_ptr), "T_REC", &status);
 392            		if (fabs(trec0 - trec) < 10) return 0;
 393            	}
 394            	
 395            	return 1;
 396            	
 397            }
 398            
 399            
 400 mbobra 1.1 
 401            
 402            /*
 403             * Create CEA record: top level subroutine
 404             * Also compute all the space weather keywords here
 405             */
 406            
 407            int createCeaRecord(DRMS_Record_t *mharpRec, DRMS_Record_t *contRec, DRMS_Record_t *sharpRec, struct swIndex *swKeys_ptr)
 408            {
 409            	
 410            	int status = 0;
 411            	DRMS_Segment_t *inSeg;
 412            	DRMS_Array_t *inArray;
 413            	int val;
 414            
 415            	struct mapInfo mInfo;
 416            	mInfo.proj = (enum projection) cyleqa;		// projection method
 417            	mInfo.xscale = XSCALE;
 418            	mInfo.yscale = YSCALE;
 419            	
 420                int ncol0, nrow0;		// oversampled map size
 421 mbobra 1.1 	
 422            	// Get ephemeris
 423            	
 424            	if (getEphemeris(mharpRec, &(mInfo.ephem))) {
 425            		SHOW("CEA: get ephemeris error\n");
 426            		return 1;
 427            	}
 428            	
 429            	// Find position
 430            
 431            	if (findPosition(mharpRec, &mInfo)) {
 432            		SHOW("CEA: find position error\n");
 433            		return 1;
 434            	}
 435            	
 436            	// ========================================
 437            	// Do this for all bitmaps, Aug 12 2013 XS
 438            	// ========================================
 439            	
 440                    mInfo.nbin = 1;			// for bitmaps. suppress anti-aliasing
 441            	ncol0 = mInfo.ncol;
 442 mbobra 1.1 	nrow0 = mInfo.nrow;
 443            	
 444            	mInfo.xi_out = (float *) (malloc(ncol0 * nrow0 * sizeof(float)));
 445            	mInfo.zeta_out = (float *) (malloc(ncol0 * nrow0 * sizeof(float)));
 446            	
 447            	findCoord(&mInfo);		// compute it here so it could be shared by the following 4 functions
 448            	
 449            	if (mapScaler(sharpRec, mharpRec, mharpRec, &mInfo, "bitmap")) {
 450            		SHOW("CEA: mapping bitmap error\n");
 451            		return 1;
 452            	}
 453            	printf("Bitmap mapping done.\n");
 454            	
 455                    free(mInfo.xi_out);
 456            	free(mInfo.zeta_out);
 457            
 458            	// ========================================
 459            	// Do this again for floats, Aug 12 2013 XS
 460            	// ========================================
 461            	// Create xi_out, zeta_out array in mInfo:
 462            	// Coordinates to sample in original full disk image
 463 mbobra 1.1 	
 464            	mInfo.nbin = NBIN;
 465            	ncol0 = mInfo.ncol * mInfo.nbin + (mInfo.nbin / 2) * 2;	// pad with nbin/2 on edge to avoid NAN
 466            	nrow0 = mInfo.nrow * mInfo.nbin + (mInfo.nbin / 2) * 2;
 467            	
 468            	mInfo.xi_out = (float *) (malloc(ncol0 * nrow0 * sizeof(float)));
 469            	mInfo.zeta_out = (float *) (malloc(ncol0 * nrow0 * sizeof(float)));
 470            	
 471            	findCoord(&mInfo);		// compute it here so it could be shared by the following 4 functions
 472            
 473            	// Mapping single segment: Mharp, etc.
 474                
 475            	if (mapScaler(sharpRec, mharpRec, mharpRec, &mInfo, "magnetogram")) {
 476            		SHOW("CEA: mapping magnetogram error\n");
 477            		return 1;
 478            	}
 479            	printf("Magnetogram mapping done.\n");
 480            	 
 481            	if (mapScaler(sharpRec, contRec, mharpRec, &mInfo, "continuum")) {
 482            		SHOW("CEA: mapping continuum error\n");
 483            		return 1;
 484 mbobra 1.1 	}
 485            	printf("Intensitygram mapping done.\n");
 486            
 487            	// Keywords & Links
 488            	copy_patch_keys(mharpRec, sharpRec);
 489            	copy_geo_keys(mharpRec, sharpRec);
 490                    // rename HARPNUM to TARPNUM
 491            	val = drms_getkey_double(mharpRec, "HARPNUM", &status);
 492                    drms_setkey_double(sharpRec, "TARPNUM", val);	
 493            	// copy everything else 
 494            	drms_copykey(sharpRec, mharpRec, "T_REC");
 495            	drms_copykey(sharpRec, mharpRec, "CDELT1");
 496            	drms_copykey(sharpRec, mharpRec, "RSUN_OBS");
 497            	drms_copykey(sharpRec, mharpRec, "DSUN_OBS");
 498            	drms_copykey(sharpRec, mharpRec, "OBS_VR");
 499            	drms_copykey(sharpRec, mharpRec, "OBS_VW");
 500            	drms_copykey(sharpRec, mharpRec, "OBS_VN");
 501                    drms_copykey(sharpRec, mharpRec, "CRLN_OBS");
 502                    drms_copykey(sharpRec, mharpRec, "CRLT_OBS");
 503            	drms_copykey(sharpRec, mharpRec, "CAR_ROT");
 504            	drms_copykey(sharpRec, mharpRec, "SIZE_SPT");
 505 mbobra 1.1 	drms_copykey(sharpRec, mharpRec, "AREA_SPT");
 506                    drms_copykey(sharpRec, mharpRec, "DATE__OBS");
 507                    drms_copykey(sharpRec, mharpRec, "T_OBS");
 508                    drms_copykey(sharpRec, mharpRec, "T_MAXPIX");
 509            	drms_copykey(sharpRec, mharpRec, "QUALITY");
 510            	drms_copykey(sharpRec, mharpRec, "NPIX_SPT");
 511            	drms_copykey(sharpRec, mharpRec, "ARS_NCLN");
 512            	drms_copykey(sharpRec, mharpRec, "ARS_MODL");
 513            	drms_copykey(sharpRec, mharpRec, "ARS_EDGE");
 514            	drms_copykey(sharpRec, mharpRec, "ARS_BETA");
 515            	drms_copykey(sharpRec, mharpRec, "T_MID1");
 516            	drms_copykey(sharpRec, mharpRec, "T_CMPASS");
 517            
 518            	DRMS_Link_t *mHarpLink = hcon_lookup_lower(&sharpRec->links, "MTARP");
 519            	if (mHarpLink) {
 520                        drms_link_set("MTARP", sharpRec, mharpRec);
 521                    }
 522            
 523                    // set other keywords
 524                    setKeys(sharpRec, mharpRec, &mInfo);
 525            
 526 mbobra 1.1 	// set space weather keywords
 527                    computeSWIndex(swKeys_ptr, sharpRec, &mInfo);	 
 528                    printf("Space weather indices done.\n");
 529            	setSWIndex(sharpRec, swKeys_ptr);
 530            	         
 531            	// set statistical keywords (e.g. DATAMIN, DATAMAX, etc.)	
 532            	//int nCEASegs = ARRLENGTH(CEASegs);
 533            	int nCEASegs = 3;	
 534                    for (int iSeg = 0; iSeg < 3; iSeg++) {
 535            		DRMS_Segment_t *outSeg = drms_segment_lookupnum(sharpRec, iSeg);
 536            		DRMS_Array_t *outArray = drms_segment_read(outSeg, DRMS_TYPE_FLOAT, &status);
 537            		int stat = set_statistics(outSeg, outArray, 1);
 538            		//printf("%d => %d\n", iSeg, stat);
 539            		drms_free_array(outArray);
 540            	}
 541                    
 542            	free(mInfo.xi_out);
 543            	free(mInfo.zeta_out);
 544            	return 0;
 545            	
 546            }
 547 mbobra 1.1 
 548            /*
 549             * Mapping a single segment
 550             * Read in full disk image, utilize mapImage for mapping
 551             * then write the segment out, segName same in in/out Rec
 552             */
 553            
 554            int mapScaler(DRMS_Record_t *sharpRec, DRMS_Record_t *inRec, DRMS_Record_t *harpRec,
 555            			  struct mapInfo *mInfo, char *segName)
 556            {
 557            	
 558            	int status = 0;
 559            	int nx = mInfo->ncol, ny = mInfo->nrow, nxny = nx * ny;
 560            	int dims[2] = {nx, ny};
 561            	int interpOpt = INTERP;		// Aug 12 XS, default, overridden below for bitmaps and conf_disambig
 562            	
 563            	// Input full disk array
 564            	
 565            	DRMS_Segment_t *inSeg = NULL;
 566            	inSeg = drms_segment_lookup(inRec, segName);
 567            	if (!inSeg) return 1;
 568 mbobra 1.1 	
 569            	DRMS_Array_t *inArray = NULL;
 570            
 571            	inArray = drms_segment_read(inSeg, DRMS_TYPE_FLOAT, &status);
 572            	if (!inArray) return 1;
 573            	    
 574            	float *inData;
 575            	int xsz = inArray->axis[0], ysz = inArray->axis[1];
 576            	if ((xsz != FOURK) || (ysz != FOURK)) {		// for bitmap, make tmp full disk
 577            		float *inData0 = (float *) inArray->data;
 578            		inData = (float *) (calloc(FOURK2, sizeof(float)));
 579            		int x0 = (int) drms_getkey_float(harpRec, "CRPIX1", &status) - 1;
 580            		int y0 = (int) drms_getkey_float(harpRec, "CRPIX2", &status) - 1;
 581            		int ind_map;
 582            		for (int row = 0; row < ysz; row++) {
 583            			for (int col = 0; col < xsz; col++) {
 584            				ind_map = (row + y0) * FOURK + (col + x0);
 585            				inData[ind_map] = inData0[row * xsz + col];
 586            			}
 587            		}
 588            		drms_free_array(inArray); inArray = NULL;
 589 mbobra 1.1 	} else {
 590            		inData = (float *) inArray->data;
 591            	}
 592            	
 593            	// Mapping
 594            	
 595            	float *map = (float *) (malloc(nxny * sizeof(float)));
 596            	if (performSampling(map, inData, mInfo, interpOpt))		// Add interpOpt for different types, Aug 12 XS
 597            	{if (inArray) drms_free_array(inArray); free(map); return 1;}
 598            	
 599            	// Write out
 600            	
 601            	DRMS_Segment_t *outSeg = NULL;
 602            	outSeg = drms_segment_lookup(sharpRec, segName);
 603            	if (!outSeg) return 1;
 604            	
 605                //	DRMS_Type_t arrayType = outSeg->info->type;
 606            	DRMS_Array_t *outArray = drms_array_create(DRMS_TYPE_FLOAT, 2, dims, map, &status);
 607            	if (status) {if (inArray) drms_free_array(inArray); free(map); return 1;}
 608            	
 609            	// convert to needed data type
 610 mbobra 1.1 	
 611                //	drms_array_convert_inplace(outSeg->info->type, 0, 1, outArray);		// Jan 02 2013
 612            	
 613            	outSeg->axis[0] = outArray->axis[0]; outSeg->axis[1] = outArray->axis[1];
 614                //	outArray->parent_segment = outSeg;
 615            	outArray->israw = 0;		// always compressed
 616            	outArray->bzero = outSeg->bzero;
 617            	outArray->bscale = outSeg->bscale;
 618            	
 619            	status = drms_segment_write(outSeg, outArray, 0);
 620            	if (status) return 0;
 621            	
 622            	if (inArray) drms_free_array(inArray);
 623            	if ((xsz != FOURK) || (ysz != FOURK)) free(inData);			// Dec 18 2012
 624            	if (outArray) drms_free_array(outArray);
 625            	return 0;
 626            	
 627            }
 628            
 629            /*
 630             * Determine reference point coordinate and patch size according to keywords
 631 mbobra 1.1  * xc, yc are the coordinate of patch center, in degrees
 632             * ncol and nrow are the final size
 633             */
 634            
 635            int findPosition(DRMS_Record_t *inRec, struct mapInfo *mInfo)
 636            {
 637            	
 638            	int status = 0;
 639            	int harpnum = drms_getkey_int(inRec, "TARPNUM", &status);
 640            	TIME trec = drms_getkey_time(inRec, "T_REC", &status);
 641            	float disk_lonc = drms_getkey_float(inRec, "CRLN_OBS", &status);
 642            	
 643            	/* Center coord */
 644                // Changed into double Jun 16 2014 XS
 645            	
 646            	double minlon = drms_getkey_double(inRec, "LONDTMIN", &status); if (status) return 1;		// Stonyhurst lon
 647            	double maxlon = drms_getkey_double(inRec, "LONDTMAX", &status); if (status) return 1;
 648            	double minlat = drms_getkey_double(inRec, "LATDTMIN", &status); if (status) return 1;
 649            	double maxlat = drms_getkey_double(inRec, "LATDTMAX", &status); if (status) return 1;
 650            	
 651            	// A bug fixer for HARP (per M. Turmon)
 652 mbobra 1.1 	// When AR is below threshold, "LONDTMIN", "LONDTMAX" will be wrong
 653            	// Also keywords such as "SIZE" will be NaN
 654            	// We compute minlon & minlat then by
 655            	// LONDTMIN(t) = LONDTMIN(t0) + (t - t0) * OMEGA_DT
 656            	
 657                //	float psize = drms_getkey_float(inRec, "SIZE", &status);
 658                //	if (psize != psize) {
 659                
 660                if (minlon != minlon || maxlon != maxlon) {		// check lons instead of SIZE
 661            		TIME t0 = drms_getkey_time(inRec, "T_FRST1", &status); if (status) return 1;			// changed from T_FRST to T_FRST1, T_FRST may not exist
 662            		double omega = drms_getkey_double(inRec, "OMEGA_DT", &status); if (status) return 1;
 663            		char firstRecQuery[100], t0_str[100];
 664            		sprint_time(t0_str, t0, "TAI", 0);
 665            		snprintf(firstRecQuery, 100, "%s[%d][%s]", inRec->seriesinfo->seriesname, harpnum, t0_str);
 666            		DRMS_RecordSet_t *tmpRS = drms_open_records(drms_env, firstRecQuery, &status);
 667            		if (status || tmpRS->n != 1) return 1;
 668            		DRMS_Record_t *tmpRec = tmpRS->records[0];
 669            		double minlon0 = drms_getkey_double(tmpRec, "LONDTMIN", &status); if (status) return 1;
 670            		double maxlon0 = drms_getkey_double(tmpRec, "LONDTMAX", &status); if (status) return 1;
 671            		minlon = minlon0 + (trec - t0) * omega / SECINDAY;
 672            		maxlon = maxlon0 + (trec - t0) * omega / SECINDAY;
 673 mbobra 1.1 		printf("%s, %f, %f\n", firstRecQuery, minlon, maxlon);
 674            	}
 675            	
 676            	mInfo->xc = (maxlon + minlon) / 2. + disk_lonc;
 677            	mInfo->yc = (maxlat + minlat) / 2.;
 678            	
 679            	/* Size */
 680                // Rounded to 1.d3 precision first. Jun 16 2014 XS
 681                // The previous fix does not work. LONDTMAX-LONDTMIN varies from frame to frame
 682                // Need to find out the maximum possible difference, MAXLONDIFF (1.2e-4)
 683                // Now, ncol = (maxlon-minlon)/xscale, if the decimal part is outside 0.5 \pm (MAXLONDIFF/xscale)
 684                // proceed as it is. else, all use floor on ncol
 685            	
 686            	float dpix = (MAXLONDIFF / mInfo->xscale) * 1.5;		// "danger zone"
 687            	float ncol = (maxlon - minlon) / mInfo->xscale;
 688            	float d_ncol = fabs(ncol - floor(ncol) - 0.5);			// distance to 0.5
 689            	if (d_ncol < dpix) {
 690            		mInfo->ncol = floor(ncol);
 691            	} else {
 692            		mInfo->ncol = round(ncol);
 693            	}
 694 mbobra 1.1 
 695            	mInfo->nrow = round((maxlat - minlat) / mInfo->yscale);
 696            	
 697            	return 0;
 698            	
 699            }
 700            
 701            
 702            /*
 703             * Fetch ephemeris info from a DRMS record
 704             */
 705            
 706            int getEphemeris(DRMS_Record_t *inRec, struct ephemeris *ephem)
 707            {
 708            	
 709            	int status = 0;
 710            	
 711            	float crota2 = drms_getkey_float(inRec, "CROTA2", &status);	// rotation
 712            	double sina = sin(crota2 * RADSINDEG);
 713            	double cosa = cos(crota2 * RADSINDEG);
 714            	
 715 mbobra 1.1 	ephem->pa = - crota2 * RADSINDEG;
 716            	ephem->disk_latc = drms_getkey_float(inRec, "CRLT_OBS", &status) * RADSINDEG;
 717            	ephem->disk_lonc = drms_getkey_float(inRec, "CRLN_OBS", &status) * RADSINDEG;
 718            	
 719            	float crvalx = 0.0;
 720            	float crvaly = 0.0;
 721            	float crpix1 = drms_getkey_float(inRec, "IMCRPIX1", &status);
 722            	float crpix2 = drms_getkey_float(inRec, "IMCRPIX2", &status);
 723            	float cdelt = drms_getkey_float(inRec, "CDELT1", &status);  // in arcsec, assumimg dx=dy
 724            	ephem->disk_xc = PIX_X(0.0,0.0) - 1.0;		// Center of disk in pixel, starting at 0
 725            	ephem->disk_yc = PIX_Y(0.0,0.0) - 1.0;
 726            	
 727            	float dSun = drms_getkey_float(inRec, "DSUN_OBS", &status);
 728            	float rSun_ref = drms_getkey_float(inRec, "RSUN_REF", &status);
 729            	if (status) rSun_ref = 6.96e8;
 730            	
 731            	ephem->asd = asin(rSun_ref/dSun);
 732            	ephem->rSun = asin(rSun_ref / dSun) * RAD2ARCSEC / cdelt;
 733            	
 734            	return 0;
 735            	
 736 mbobra 1.1 }
 737            
 738            
 739            /*
 740             * Compute the coordinates to be sampled on full disk image
 741             * mInfo->xi_out & mInfo->zeta_out
 742             * This is oversampled, its size is ncol0 & nrow0 as shown below
 743             */
 744            
 745            void findCoord(struct mapInfo *mInfo)
 746            {
 747            	
 748            	int ncol0 = mInfo->ncol * mInfo->nbin + (mInfo->nbin / 2) * 2;	// pad with nbin/2 on edge to avoid NAN
 749            	int nrow0 = mInfo->nrow * mInfo->nbin + (mInfo->nbin / 2) * 2;
 750            	
 751            	float xscale0 = mInfo->xscale / mInfo->nbin * RADSINDEG;		// oversampling resolution
 752            	float yscale0 = mInfo->yscale / mInfo->nbin * RADSINDEG;		// in rad
 753            	
 754            	double lonc = mInfo->xc * RADSINDEG;	// in rad
 755            	double latc = mInfo->yc * RADSINDEG;
 756            	
 757 mbobra 1.1 	double disk_lonc = (mInfo->ephem).disk_lonc;
 758            	double disk_latc = (mInfo->ephem).disk_latc;
 759            	
 760            	double rSun = (mInfo->ephem).rSun;
 761            	double disk_xc = (mInfo->ephem).disk_xc / rSun;
 762            	double disk_yc = (mInfo->ephem).disk_yc / rSun;
 763            	double pa = (mInfo->ephem).pa;
 764            	
 765            	// Temp pointers
 766            	
 767            	float *xi_out = mInfo->xi_out;
 768            	float *zeta_out = mInfo->zeta_out;
 769            	
 770            	// start
 771            	
 772            	double x, y;		// map coord
 773            	double lat, lon;	// helio coord
 774            	double xi, zeta;	// image coord (for one point)
 775            	
 776            	int ind_map;
 777            	
 778 mbobra 1.1 	for (int row0 = 0; row0 < nrow0; row0++) {
 779            		for (int col0 = 0; col0 < ncol0; col0++) {
 780            			
 781            			ind_map = row0 * ncol0 + col0;
 782            			
 783            			x = (col0 + 0.5 - ncol0/2.) * xscale0;		// in rad
 784            			y = (row0 + 0.5 - nrow0/2.) * yscale0;
 785            			
 786            			/* map grid [x, y] corresponds to the point [lon, lat] in the heliographic coordinates.
 787            			 * the [x, y] are in radians with respect of the center of the map [xcMap, ycMap].
 788            			 * projection methods could be Mercator, Lambert, and many others. [maplonc, mapLatc]
 789            			 * is the heliographic longitude and latitude of the map center. Both are in degree.
 790            			 */
 791            			
 792            			if (plane2sphere (x, y, latc, lonc, &lat, &lon, (int) mInfo->proj)) {
 793            				xi_out[ind_map] = -1;
 794            				zeta_out[ind_map] = -1;
 795            				continue;
 796            			}
 797            			
 798            			/* map the grid [lon, lat] in the heliographic coordinates to [xi, zeta], a point in the
 799 mbobra 1.1 			 * image coordinates. The image properties, xCenter, yCenter, rSun, pa, ecc and chi are given.
 800            			 */
 801            			
 802            			if (sphere2img (lat, lon, disk_latc, disk_lonc, &xi, &zeta,
 803            							disk_xc, disk_yc, 1.0, pa, 0., 0., 0., 0.)) {
 804            				xi_out[ind_map] = -1;
 805            				zeta_out[ind_map] = -1;
 806            				continue;
 807            			}
 808            			
 809            			xi_out[ind_map] = xi * rSun;
 810            			zeta_out[ind_map] = zeta * rSun;
 811            			
 812            		}
 813            	}
 814            	
 815            }
 816            
 817            
 818            /*
 819             * Sampling function
 820 mbobra 1.1  * oversampling by nbin, then binning using a Gaussian
 821             * save results in outData, always of float type
 822             */
 823            
 824            int performSampling(float *outData, float *inData, struct mapInfo *mInfo, int interpOpt)
 825            {
 826            	
 827            	int status = 0;
 828            	int ind_map;
 829            	
 830            	int ncol0 = mInfo->ncol * mInfo->nbin + (mInfo->nbin / 2) * 2;	// pad with nbin/2 on edge to avoid NAN
 831            	int nrow0 = mInfo->nrow * mInfo->nbin + (mInfo->nbin / 2) * 2;
 832            	
 833            	// Changed Aug 12 2013, XS, for bitmaps
 834            	float *outData0;
 835            	if (interpOpt == 3 && mInfo->nbin == 1) {
 836                    outData0 = outData;
 837            	} else {
 838                    outData0 = (float *) (malloc(ncol0 * nrow0 * sizeof(float)));
 839            	}
 840            	
 841 mbobra 1.1 	float *xi_out = mInfo->xi_out;
 842            	float *zeta_out = mInfo->zeta_out;
 843            	
 844            	// Interpolation
 845            	
 846            	struct fint_struct pars;
 847            	// Aug 12 2013, passed in as argument now
 848            	
 849            	switch (interpOpt) {
 850            		case 0:			// Wiener, 6 order, 1 constraint
 851            			init_finterpolate_wiener(&pars, 6, 1, 6, 2, 1, 1, NULL, dpath);
 852            			break;
 853            		case 1:			// Cubic convolution
 854            			init_finterpolate_cubic_conv(&pars, 1., 3.);
 855            			break;
 856            		case 2:			// Bilinear
 857            			init_finterpolate_linear(&pars, 1.);
 858            			break;
 859            		case 3:			// Near neighbor
 860                        break;
 861            		default:
 862 mbobra 1.1 			return 1;
 863            	}
 864            	
 865            	//printf("interpOpt = %d, nbin = %d ", interpOpt, mInfo->nbin);
 866            	if (interpOpt == 3) {			// Aug 6 2013, Xudong
 867            	  	for (int row0 = 0; row0 < nrow0; row0++) {
 868                        for (int col0 = 0; col0 < ncol0; col0++) {
 869                            ind_map = row0 * ncol0 + col0;
 870                            outData0[ind_map] = nnb(inData, FOURK, FOURK, xi_out[ind_map], zeta_out[ind_map]);
 871                        }
 872                    }
 873            	} else {
 874                    finterpolate(&pars, inData, xi_out, zeta_out, outData0,
 875                                 FOURK, FOURK, FOURK, ncol0, nrow0, ncol0, DRMS_MISSING_FLOAT);
 876            	}
 877            	
 878            	// Rebinning, smoothing
 879            	
 880            	if (interpOpt == 3 && mInfo->nbin == 1) {
 881                    return 0;
 882            	} else {
 883 mbobra 1.1         frebin(outData0, outData, ncol0, nrow0, mInfo->nbin, 1);		// Gaussian
 884                    free(outData0);		
 885            	}
 886            
 887            	return 0;
 888            	
 889            }
 890            
 891            /*
 892             * Create Cutout record: top level subroutine
 893             * Do the loops on segments and set the keywords here
 894             * Work is done in writeCutout routine below
 895             */
 896            
 897            int createCutRecord(DRMS_Record_t *mharpRec, DRMS_Record_t *contRec, DRMS_Record_t *sharpRec, struct swIndex *swKeys_ptr)
 898            {
 899            	
 900            	int status = 0;
 901            	int val;	
 902            	int iHarpSeg;
 903            	int nMharpSegs = ARRLENGTH(MharpSegs);
 904 mbobra 1.1 	
 905            	// Cutout Mharp
 906            	
 907            	for (iHarpSeg = 0; iHarpSeg < nMharpSegs; iHarpSeg++) {
 908            		if (writeCutout(sharpRec, mharpRec, mharpRec, MharpSegs[iHarpSeg])) {
 909            			printf("Mharp cutout fails for %s\n", MharpSegs[iHarpSeg]);
 910            			printf("iHarpSeg nMharpSegs %d %d \n",iHarpSeg,nMharpSegs);
 911            			break;
 912            		}
 913            	}
 914            	if (iHarpSeg != nMharpSegs) {
 915            		SHOW("Cutout: segment number mismatch\n");
 916            		return 1;		// if failed
 917            	}
 918            	printf("Magnetogram cutout done.\n");
 919            
 920            	// Cutout Continuum
 921            	
 922            	if (writeCutout(sharpRec, contRec, mharpRec, "continuum")) {
 923            		printf("Continuum cutout failed\n");
 924            		return 1;
 925 mbobra 1.1 	}
 926            	printf("Intensitygram cutout done.\n");
 927            			
 928            	// Keywords & Links
 929            	copy_patch_keys(mharpRec, sharpRec);
 930            	copy_geo_keys(mharpRec, sharpRec);
 931                    // rename HARPNUM to TARPNUM
 932            	val = drms_getkey_double(mharpRec, "HARPNUM", &status);
 933                    drms_setkey_double(sharpRec, "TARPNUM", val);	
 934            	// copy everything else 
 935            	drms_copykey(sharpRec, mharpRec, "T_REC");
 936            	drms_copykey(sharpRec, mharpRec, "CDELT1");
 937            	drms_copykey(sharpRec, mharpRec, "RSUN_OBS");
 938            	drms_copykey(sharpRec, mharpRec, "DSUN_OBS");
 939            	drms_copykey(sharpRec, mharpRec, "OBS_VR");
 940            	drms_copykey(sharpRec, mharpRec, "OBS_VW");
 941            	drms_copykey(sharpRec, mharpRec, "OBS_VN");
 942                    drms_copykey(sharpRec, mharpRec, "CRLN_OBS");
 943                    drms_copykey(sharpRec, mharpRec, "CRLT_OBS");
 944            	drms_copykey(sharpRec, mharpRec, "CAR_ROT");
 945            	drms_copykey(sharpRec, mharpRec, "SIZE_SPT");
 946 mbobra 1.1 	drms_copykey(sharpRec, mharpRec, "AREA_SPT");
 947                    drms_copykey(sharpRec, mharpRec, "DATE__OBS");
 948                    drms_copykey(sharpRec, mharpRec, "T_OBS");
 949                    drms_copykey(sharpRec, mharpRec, "T_MAXPIX");
 950            	drms_copykey(sharpRec, mharpRec, "QUALITY");
 951            	drms_copykey(sharpRec, mharpRec, "NPIX_SPT");
 952            	drms_copykey(sharpRec, mharpRec, "ARS_NCLN");
 953            	drms_copykey(sharpRec, mharpRec, "ARS_MODL");
 954            	drms_copykey(sharpRec, mharpRec, "ARS_EDGE");
 955            	drms_copykey(sharpRec, mharpRec, "ARS_BETA");
 956            	drms_copykey(sharpRec, mharpRec, "T_MID1");
 957            	drms_copykey(sharpRec, mharpRec, "T_CMPASS");
 958            
 959            	DRMS_Link_t *mHarpLink = hcon_lookup_lower(&sharpRec->links, "MTARP");
 960            	if (mHarpLink) {
 961                        drms_link_set("MTARP", sharpRec, mharpRec);
 962                    }
 963            	
 964            	setSWIndex(sharpRec, swKeys_ptr);	// Set space weather indices
 965            	setKeys(sharpRec, mharpRec, NULL);      // Set all other keywords, NULL specifies cutout
 966            	
 967 mbobra 1.1 	// Stats
 968                   	
 969            	int nCutSegs = 3; 
 970            	for (int iSeg = 0; iSeg < 3; iSeg++) {
 971            		DRMS_Segment_t *outSeg = drms_segment_lookupnum(sharpRec, iSeg);
 972            		DRMS_Array_t *outArray = drms_segment_read(outSeg, DRMS_TYPE_FLOAT, &status);
 973            		set_statistics(outSeg, outArray, 1);
 974            		drms_free_array(outArray);
 975            	}
 976            	
 977            	return 0;
 978            	
 979            }
 980            
 981            /*
 982             * Get cutout and write segment
 983             */
 984            
 985            int writeCutout(DRMS_Record_t *outRec, DRMS_Record_t *inRec, DRMS_Record_t *harpRec, char *SegName)
 986            {
 987            	
 988 mbobra 1.1 	int status = 0;
 989            	
 990            	DRMS_Segment_t *inSeg = NULL, *outSeg = NULL;
 991            	DRMS_Array_t *cutoutArray = NULL;
 992            	//	DRMS_Type_t arrayType;
 993            	
 994            	int ll[2], ur[2], nx, ny, nxny;		// lower-left and upper right coords
 995            	
 996            	/* Info */
 997            	
 998            	inSeg = drms_segment_lookup(inRec, SegName);
 999            	if (!inSeg) return 1;
1000            	//printf("SegName=%s\n",SegName); fflush(stdout);
1001            	nx = (int) drms_getkey_float(harpRec, "CRSIZE1", &status);
1002            	ny = (int) drms_getkey_float(harpRec, "CRSIZE2", &status);
1003            	nxny = nx * ny;
1004            	ll[0] = (int) drms_getkey_float(harpRec, "CRPIX1", &status) - 1; if (status) return 1;
1005            	ll[1] = (int) drms_getkey_float(harpRec, "CRPIX2", &status) - 1; if (status) return 1;
1006            	ur[0] = ll[0] + nx - 1; if (status) return 1;
1007            	ur[1] = ll[1] + ny - 1; if (status) return 1;
1008            	if (inSeg->axis[0] == nx && inSeg->axis[1] == ny) {			// for bitmaps, infomaps, etc.
1009 mbobra 1.1 		cutoutArray = drms_segment_read(inSeg, DRMS_TYPE_DOUBLE, &status);
1010            		if (status) return 1;
1011            	} else if (inSeg->axis[0] == FOURK && inSeg->axis[1] == FOURK) {		// for full disk ones
1012            		cutoutArray = drms_segment_readslice(inSeg, DRMS_TYPE_DOUBLE, ll, ur, &status);
1013            		if (status) return 1;
1014            	} else {
1015            		return 1;
1016            	}
1017            	/* Write out */
1018            	outSeg = drms_segment_lookup(outRec, SegName);
1019            	if (!outSeg) return 1;
1020            	outSeg->axis[0] = cutoutArray->axis[0];
1021            	outSeg->axis[1] = cutoutArray->axis[1];
1022            	cutoutArray->israw = 0;		// always compressed
1023                cutoutArray->bzero = outSeg->bzero;
1024                cutoutArray->bscale = outSeg->bscale;		// Same as inArray's
1025            	status = drms_segment_write(outSeg, cutoutArray, 0);
1026            	drms_free_array(cutoutArray);
1027            	if (status) return 1;
1028            	//printf("line1068\n"); fflush(stdout);
1029            	return 0;
1030 mbobra 1.1 	
1031            }
1032            
1033            
1034            /*
1035             * Compute space weather indices
1036             */
1037            
1038            void computeSWIndex(struct swIndex *swKeys_ptr, DRMS_Record_t *inRec, struct mapInfo *mInfo)
1039            {
1040            	
1041            	int status = 0;
1042            	int nx = mInfo->ncol, ny = mInfo->nrow;
1043            	int nxny = nx * ny;
1044            	int dims[2] = {nx, ny};
1045                
1046            	// Get bx, by, bz, mask
1047            	
1048            	// Use HARP (Turmon) bitmap as a threshold on spaceweather quantities
1049            	DRMS_Segment_t *bitmaskSeg = drms_segment_lookup(inRec, "bitmap");
1050            	DRMS_Array_t *bitmaskArray = drms_segment_read(bitmaskSeg, DRMS_TYPE_INT, &status);
1051 mbobra 1.1 	int *bitmask = (int *) bitmaskArray->data;		// get the previously made mask array
1052            	    
1053                    //Use magnetogram map to compute R
1054                    DRMS_Segment_t *losSeg = drms_segment_lookup(inRec, "magnetogram");
1055                    DRMS_Array_t *losArray = drms_segment_read(losSeg, DRMS_TYPE_FLOAT, &status);
1056                    float *los = (float *) losArray->data;          // los
1057                	 
1058            	// Get emphemeris
1059            	float  cdelt1_orig = drms_getkey_float(inRec, "CDELT1",   &status);
1060            	float  dsun_obs    = drms_getkey_float(inRec, "DSUN_OBS",   &status);
1061            	double rsun_ref    = drms_getkey_double(inRec, "RSUN_REF", &status);
1062            	double rsun_obs    = drms_getkey_double(inRec, "RSUN_OBS", &status);
1063            	float imcrpix1     = drms_getkey_float(inRec, "IMCRPIX1", &status);
1064            	float imcrpix2     = drms_getkey_float(inRec, "IMCRPIX2", &status);
1065            	float crpix1       = drms_getkey_float(inRec, "CRPIX1", &status);
1066            	float crpix2       = drms_getkey_float(inRec, "CRPIX2", &status);
1067                
1068                    // convert cdelt1_orig from degrees to arcsec
1069                    float cdelt1       = (atan((rsun_ref*cdelt1_orig*RADSINDEG)/(dsun_obs)))*(1/RADSINDEG)*(3600.);
1070            
1071            	// Temp arrays
1072 mbobra 1.1 	float *derx_bz = (float *) (malloc(nxny * sizeof(float)));
1073            	float *dery_bz = (float *) (malloc(nxny * sizeof(float)));
1074                 
1075                    // define some values for the R calculation
1076                    int scale = round(2.0/cdelt1);
1077                    int nx1 = nx/scale;
1078                    int ny1 = ny/scale;
1079                    int nxp = nx1+40; // same comment as above
1080                    int nyp = ny1+40; // why is this a +40 pixel size? is this an MDI pixel?
1081                    float *rim     = (float *)malloc(nx1*ny1*sizeof(float));
1082                    float *p1p0    = (float *)malloc(nx1*ny1*sizeof(float));
1083                    float *p1n0    = (float *)malloc(nx1*ny1*sizeof(float));
1084                    float *p1p     = (float *)malloc(nx1*ny1*sizeof(float));
1085                    float *p1n     = (float *)malloc(nx1*ny1*sizeof(float));
1086                    float *p1      = (float *)malloc(nx1*ny1*sizeof(float));
1087                    float *pmap    = (float *)malloc(nxp*nyp*sizeof(float));
1088                    float *p1pad   = (float *)malloc(nxp*nyp*sizeof(float));
1089                    float *pmapn   = (float *)malloc(nx1*ny1*sizeof(float));
1090                
1091            
1092            	// THREE spaceweather quantities computed: USFLUX, MEANGBZ, R_VALUE
1093 mbobra 1.1 	if (computeAbsFlux(los, dims, &(swKeys_ptr->absFlux), &(swKeys_ptr->mean_vf),
1094                                       &(swKeys_ptr->count_mask), bitmask, cdelt1, rsun_ref, rsun_obs))
1095                    {
1096            		swKeys_ptr->absFlux = DRMS_MISSING_FLOAT;		// If fail, fill in NaN
1097            		swKeys_ptr->mean_vf = DRMS_MISSING_FLOAT;
1098                            swKeys_ptr->count_mask  = DRMS_MISSING_INT;
1099            	}
1100                
1101                
1102            	if (computeBzderivative(los, dims, &(swKeys_ptr->mean_derivative_bz), 
1103                                            bitmask, derx_bz, dery_bz))
1104                    {
1105            		swKeys_ptr->mean_derivative_bz = DRMS_MISSING_FLOAT; // If fail, fill in NaN
1106                    }
1107            	
1108                
1109            	if (computeR(los, dims, &(swKeys_ptr->Rparam), cdelt1, rim, p1p0, p1n0,
1110                                 p1p, p1n, p1, pmap, nx1, ny1, scale, p1pad, nxp, nyp, pmapn))
1111                    {
1112            		swKeys_ptr->Rparam = DRMS_MISSING_FLOAT;		// If fail, fill in NaN
1113                    }
1114 mbobra 1.1 
1115                	
1116            	// Clean up the arrays
1117                  	drms_free_array(bitmaskArray);
1118            	//drms_free_array(bzArray);
1119                    drms_free_array(losArray);
1120            
1121                    // free arrays related to Bz derivative
1122            	free(derx_bz); free(dery_bz);
1123                    // free the arrays that are related to the r calculation     
1124                    free(rim);
1125                    free(p1p0);
1126                    free(p1n0);
1127                    free(p1p);
1128                    free(p1n);
1129                    free(p1);
1130                    free(pmap);
1131                    free(p1pad);
1132                    free(pmapn);
1133            }
1134            
1135 mbobra 1.1 /*
1136             * Set space weather indices
1137             */
1138            
1139            void setSWIndex(DRMS_Record_t *outRec, struct swIndex *swKeys_ptr)
1140            {
1141                drms_setkey_float(outRec, "USFLUX",  swKeys_ptr->mean_vf);
1142                drms_setkey_float(outRec, "MEANGBZ", swKeys_ptr->mean_derivative_bz);
1143                drms_setkey_float(outRec, "R_VALUE", swKeys_ptr->Rparam);
1144                drms_setkey_float(outRec, "CMASK", swKeys_ptr->count_mask);
1145            };
1146            
1147            /*
1148             * Set all keywords, no error checking for now
1149             */
1150            
1151            void setKeys(DRMS_Record_t *outRec, DRMS_Record_t *mharpRec, struct mapInfo *mInfo)
1152            {
1153                
1154                    int status = 0;
1155            	
1156 mbobra 1.1 	// Change a few geometry keywords for CEA & cutout records
1157            	if (mInfo != NULL) {        // CEA
1158            	  printf("Calculating CEA keys\n");
1159                            drms_setkey_float(outRec, "CRPIX1", mInfo->ncol/2. + 0.5);
1160            		drms_setkey_float(outRec, "CRPIX2", mInfo->nrow/2. + 0.5);
1161            		drms_setkey_float(outRec, "CRVAL1", mInfo->xc);
1162            		drms_setkey_float(outRec, "CRVAL2", mInfo->yc);
1163            		drms_setkey_float(outRec, "CDELT1", mInfo->xscale);
1164            		drms_setkey_float(outRec, "CDELT2", mInfo->yscale);
1165            		drms_setkey_string(outRec, "CUNIT1", "degree");
1166            		drms_setkey_string(outRec, "CUNIT2", "degree");
1167            		char key[64];
1168            		snprintf (key, 64, "CRLN-%s", wcsCode[(int) mInfo->proj]);
1169            		drms_setkey_string(outRec, "CTYPE1", key);
1170            		snprintf (key, 64, "CRLT-%s", wcsCode[(int) mInfo->proj]);
1171            		drms_setkey_string(outRec, "CTYPE2", key);
1172            		drms_setkey_float(outRec, "CROTA2", 0.0);
1173                        	// Set BUNIT for each segment        
1174                    	int nSeg = 3;
1175                    	for (int iSeg = 0; iSeg < nSeg; iSeg++) {
1176                        	DRMS_Segment_t *outSeg = NULL;
1177 mbobra 1.1             	outSeg = drms_segment_lookup(outRec, CEASegs[iSeg]);
1178                        	if (!outSeg) continue;
1179                        	char bunit_xxx[20];
1180                        	sprintf(bunit_xxx, "BUNIT_%03d", iSeg);
1181                        	//printf("%s, %s\n", bunit_xxx, CEABunits[iSeg]);
1182                        	drms_setkey_string(outRec, bunit_xxx, CEABunits[iSeg]);
1183                    		}
1184            		
1185            	} else {        // Cutout
1186                    
1187                    	float disk_xc, disk_yc;
1188                    	disk_xc = drms_getkey_float(mharpRec, "IMCRPIX1", &status);
1189                   		disk_yc = drms_getkey_float(mharpRec, "IMCRPIX2", &status);
1190                    	float x_ll = drms_getkey_float(mharpRec, "CRPIX1", &status);
1191                    	float y_ll = drms_getkey_float(mharpRec, "CRPIX2", &status);
1192                    	// Defined as disk center's pixel address wrt lower-left of cutout
1193                    	drms_setkey_float(outRec, "CRPIX1", disk_xc - x_ll + 1.);
1194            		drms_setkey_float(outRec, "CRPIX2", disk_yc - y_ll + 1.);
1195            		// Always 0.
1196            		drms_setkey_float(outRec, "CRVAL1", 0);
1197            		drms_setkey_float(outRec, "CRVAL2", 0);
1198 mbobra 1.1         
1199                    	// Jan 2 2014 XS
1200                    	int nSeg = ARRLENGTH(CutSegs);
1201                    	for (int iSeg = 0; iSeg < nSeg; iSeg++) 
1202                                   {
1203                        	DRMS_Segment_t *outSeg = NULL;
1204                        	outSeg = drms_segment_lookup(outRec, CutSegs[iSeg]);
1205                        	if (!outSeg) continue;
1206                        	// Set Bunit
1207                        	char bunit_xxx[20];
1208                        	sprintf(bunit_xxx, "BUNIT_%03d", iSeg);
1209                        	//printf("%s, %s\n", bunit_xxx, CutBunits[iSeg]);
1210                        	drms_setkey_string(outRec, bunit_xxx, CutBunits[iSeg]);
1211                    		}
1212            	}
1213            	
1214                
1215                TIME val, trec, tnow, UNIX_epoch = -220924792.000; /* 1970.01.01_00:00:00_UTC */
1216                tnow = (double)time(NULL);
1217                tnow += UNIX_epoch;
1218            	
1219 mbobra 1.1     val = drms_getkey_time(mharpRec, "DATE", &status);
1220                drms_setkey_time(outRec, "DATE", tnow);
1221            	
1222                // set cvs commit version into keyword CODEVER7
1223                char *cvsinfo  = strdup("$Id");
1224                char *cvsinfo2 = smarp_functions_version();
1225                char cvsinfoall[2048];
1226                strcat(cvsinfoall,cvsinfo);
1227                strcat(cvsinfoall,"\n");
1228                strcat(cvsinfoall,cvsinfo2);
1229                status = drms_setkey_string(outRec, "CODEVER7", cvsinfoall);
1230            
1231            };
1232            
1233            /* ############# Nearest neighbour interpolation ############### */
1234            
1235            float nnb (float *f, int nx, int ny, double x, double y)
1236            {
1237            	
1238            	if (x <= -0.5 || y <= -0.5 || x > nx - 0.5 || y > ny - 0.5)
1239            		return DRMS_MISSING_FLOAT;
1240 mbobra 1.1 	int ilow = floor (x);
1241            	int jlow = floor (y);
1242            	int i = ((x - ilow) > 0.5) ? ilow + 1 : ilow;
1243            	int j = ((y - jlow) > 0.5) ? jlow + 1 : jlow;
1244            	return f[j * nx + i];
1245            	
1246            }
1247            
1248            /* ################## Wrapper for Jesper's rebin code ################## */
1249            
1250            void frebin (float *image_in, float *image_out, int nx, int ny, int nbin, int gauss)
1251            {
1252            	
1253            	struct fresize_struct fresizes;
1254            	int nxout, nyout, xoff, yoff;
1255            	int nlead = nx;
1256            	
1257            	nxout = nx / nbin; nyout = ny / nbin;
1258            	if (gauss && nbin != 1)
1259            		init_fresize_gaussian(&fresizes, (nbin / 2), (nbin / 2 * 2), nbin);		// for nbin=3, sigma=1, half truncate width=2
1260            	else
1261 mbobra 1.1 		init_fresize_bin(&fresizes, nbin);
1262            	xoff = nbin / 2 + nbin / 2;
1263            	yoff = nbin / 2 + nbin / 2;
1264            	fresize(&fresizes, image_in, image_out, nx, ny, nlead, nxout, nyout, nxout, xoff, yoff, DRMS_MISSING_FLOAT);
1265            	
1266            }

Karen Tian
Powered by
ViewCVS 0.9.4