(file) Return to sw_functions.c CVS log (file) (dir) Up to [Development] / JSOC / proj / sharp / apps

Diff for /JSOC/proj/sharp/apps/sw_functions.c between version 1.13 and 1.37

version 1.13, 2013/05/31 22:47:15 version 1.37, 2015/10/30 20:21:28
Line 1 
Line 1 
   
 /*=========================================== /*===========================================
  
    The following 14 functions calculate the following spaceweather indices:    The following 14 functions calculate the following spaceweather indices:
Line 17 
Line 18 
     MEANPOT Mean photospheric excess magnetic energy density in ergs per cubic centimeter     MEANPOT Mean photospheric excess magnetic energy density in ergs per cubic centimeter
     TOTPOT Total photospheric magnetic energy density in ergs per cubic centimeter     TOTPOT Total photospheric magnetic energy density in ergs per cubic centimeter
     MEANSHR Mean shear angle (measured using Btotal) in degrees     MEANSHR Mean shear angle (measured using Btotal) in degrees
    R_VALUE Karel Schrijver's R parameter
  
    The indices are calculated on the pixels in which the conf_disambig segment is greater than 70 and    The indices are calculated on the pixels in which the conf_disambig segment is greater than 70 and
    pixels in which the bitmap segment is greater than 30. These ranges are selected because the CCD    pixels in which the bitmap segment is greater than 30. These ranges are selected because the CCD
    coordinate bitmaps are interpolated.   coordinate bitmaps are interpolated for certain data (at the time of this CVS submit, all data
    prior to 2013.08.21_17:24:00_TAI contain interpolated bitmaps; data post-2013.08.21_17:24:00_TAI
    contain nearest-neighbor bitmaps).
  
    In the CCD coordinates, this means that we are selecting the pixels that equal 90 in conf_disambig    In the CCD coordinates, this means that we are selecting the pixels that equal 90 in conf_disambig
    and the pixels that equal 33 or 44 in bitmap. Here are the definitions of the pixel values:   and the pixels that equal 33 or 34 in bitmap. Here are the definitions of the pixel values:
  
    For conf_disambig:    For conf_disambig:
    50 : not all solutions agree (weak field method applied)    50 : not all solutions agree (weak field method applied)
Line 39 
Line 43 
  
    Written by Monica Bobra 15 August 2012    Written by Monica Bobra 15 August 2012
    Potential Field code (appended) written by Keiji Hayashi    Potential Field code (appended) written by Keiji Hayashi
    Error analysis modification 21 October 2013
  
 ===========================================*/ ===========================================*/
 #include <math.h> #include <math.h>
Line 60 
Line 65 
 //  To convert G to G*cm^2, simply multiply by the number of square centimeters per pixel. //  To convert G to G*cm^2, simply multiply by the number of square centimeters per pixel.
 //  As an order of magnitude estimate, we can assign 0.5 to CDELT1 and 722500m/arcsec to (RSUN_REF/RSUN_OBS). //  As an order of magnitude estimate, we can assign 0.5 to CDELT1 and 722500m/arcsec to (RSUN_REF/RSUN_OBS).
 //  (Gauss/pix^2)(CDELT1)^2(RSUN_REF/RSUN_OBS)^2(100.cm/m)^2 //  (Gauss/pix^2)(CDELT1)^2(RSUN_REF/RSUN_OBS)^2(100.cm/m)^2
 //  =(Gauss/pix^2)(0.5 arcsec/pix)^2(722500m/arcsec)^2(100cm/m)^2  //  =Gauss*cm^2
 //  =(1.30501e15)Gauss*cm^2  
   
 //  The disambig mask value selects only the pixels with values of 5 or 7 -- that is,  
 //  5: pixels for which the radial acute disambiguation solution was chosen  
 //  7: pixels for which the radial acute and NRWA disambiguation agree  
  
 int computeAbsFlux(float *bz_err, float *bz, int *dims, float *absFlux, int computeAbsFlux(float *bz_err, float *bz, int *dims, float *absFlux,
                    float *mean_vf_ptr, float *mean_vf_err_ptr, float *count_mask_ptr, int *mask,                    float *mean_vf_ptr, float *mean_vf_err_ptr, float *count_mask_ptr, int *mask,
Line 73  int computeAbsFlux(float *bz_err, float
Line 73  int computeAbsFlux(float *bz_err, float
  
 { {
  
     int nx = dims[0], ny = dims[1];      int nx = dims[0];
     int i, j, count_mask=0;      int ny = dims[1];
     double sum,err=0.0;      int i = 0;
       int j = 0;
     if (nx <= 0 || ny <= 0) return 1;      int count_mask = 0;
       double sum = 0.0;
       double err = 0.0;
     *absFlux = 0.0;     *absFlux = 0.0;
     *mean_vf_ptr =0.0;     *mean_vf_ptr =0.0;
  
   
       if (nx <= 0 || ny <= 0) return 1;
   
         for (i = 0; i < nx; i++)         for (i = 0; i < nx; i++)
         {         {
                 for (j = 0; j < ny; j++)                 for (j = 0; j < ny; j++)
Line 97  int computeAbsFlux(float *bz_err, float
Line 101  int computeAbsFlux(float *bz_err, float
      *mean_vf_ptr     = sum*cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0;      *mean_vf_ptr     = sum*cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0;
      *mean_vf_err_ptr = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0); // error in the unsigned flux      *mean_vf_err_ptr = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0); // error in the unsigned flux
      *count_mask_ptr  = count_mask;      *count_mask_ptr  = count_mask;
      printf("CMASK=%g\n",*count_mask_ptr);  
      printf("USFLUX=%g\n",*mean_vf_ptr);  
      printf("sum=%f\n",sum);  
      printf("USFLUX_err=%g\n",*mean_vf_err_ptr);  
      return 0;      return 0;
 } }
  
Line 113  int computeBh(float *bx_err, float *by_e
Line 113  int computeBh(float *bx_err, float *by_e
  
 { {
  
     int nx = dims[0], ny = dims[1];      int nx = dims[0];
     int i, j, count_mask=0;      int ny = dims[1];
     float sum=0.0;      int i = 0;
       int j = 0;
       int count_mask = 0;
       double sum = 0.0;
     *mean_hf_ptr = 0.0;     *mean_hf_ptr = 0.0;
  
     if (nx <= 0 || ny <= 0) return 1;     if (nx <= 0 || ny <= 0) return 1;
Line 124  int computeBh(float *bx_err, float *by_e
Line 127  int computeBh(float *bx_err, float *by_e
           {           {
             for (j = 0; j < ny; j++)             for (j = 0; j < ny; j++)
               {               {
                 if isnan(bx[j * nx + i]) continue;              if isnan(bx[j * nx + i])
                 if isnan(by[j * nx + i]) continue;              {
                   bh[j * nx + i] = NAN;
                   bh_err[j * nx + i] = NAN;
                   continue;
               }
               if isnan(by[j * nx + i])
               {
                   bh[j * nx + i] = NAN;
                   bh_err[j * nx + i] = NAN;
                   continue;
               }
                 bh[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] );                 bh[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] );
                 sum += bh[j * nx + i];                 sum += bh[j * nx + i];
                 bh_err[j * nx + i]=sqrt( bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i] + by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i])/ bh[j * nx + i];                 bh_err[j * nx + i]=sqrt( bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i] + by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i])/ bh[j * nx + i];
Line 141  int computeBh(float *bx_err, float *by_e
Line 154  int computeBh(float *bx_err, float *by_e
 /*===========================================*/ /*===========================================*/
 /* Example function 3: Calculate Gamma in units of degrees */ /* Example function 3: Calculate Gamma in units of degrees */
 // Native units of atan(x) are in radians; to convert from radians to degrees, multiply by (180./PI) // Native units of atan(x) are in radians; to convert from radians to degrees, multiply by (180./PI)
 // Redo calculation in radians for error analysis (since derivatives are only true in units of radians).  //
   // Error analysis calculations are done in radians (since derivatives are only true in units of radians),
   // and multiplied by (180./PI) at the end for consistency in units.
  
 int computeGamma(float *bz_err, float *bh_err, float *bx, float *by, float *bz, float *bh, int *dims, int computeGamma(float *bz_err, float *bh_err, float *bx, float *by, float *bz, float *bh, int *dims,
                  float *mean_gamma_ptr, float *mean_gamma_err_ptr, int *mask, int *bitmask)                  float *mean_gamma_ptr, float *mean_gamma_err_ptr, int *mask, int *bitmask)
 { {
     int nx = dims[0], ny = dims[1];      int nx = dims[0];
     int i, j, count_mask=0;      int ny = dims[1];
       int i = 0;
     if (nx <= 0 || ny <= 0) return 1;      int j = 0;
       int count_mask = 0;
       double sum = 0.0;
       double err = 0.0;
     *mean_gamma_ptr=0.0;     *mean_gamma_ptr=0.0;
     float sum,err,err_value=0.0;  
  
       if (nx <= 0 || ny <= 0) return 1;
  
         for (i = 0; i < nx; i++)         for (i = 0; i < nx; i++)
           {           {
Line 165  int computeGamma(float *bz_err, float *b
Line 182  int computeGamma(float *bz_err, float *b
                     if isnan(bz[j * nx + i]) continue;                     if isnan(bz[j * nx + i]) continue;
                     if isnan(bz_err[j * nx + i]) continue;                     if isnan(bz_err[j * nx + i]) continue;
                     if isnan(bh_err[j * nx + i]) continue;                     if isnan(bh_err[j * nx + i]) continue;
                   if isnan(bh[j * nx + i]) continue;
                     if (bz[j * nx + i] == 0) continue;                     if (bz[j * nx + i] == 0) continue;
                     sum += (atan(fabs(bz[j * nx + i]/bh[j * nx + i] )))*(180./PI);                  sum += fabs(atan(bh[j * nx + i]/fabs(bz[j * nx + i])))*(180./PI);
                     err += (( sqrt ( ((bz_err[j * nx + i]*bz_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i])) + ((bh_err[j * nx + i]*bh_err[j * nx + i])/(bh[j * nx + i]*bh[j * nx + i])))  * fabs(bz[j * nx + i]/bh[j * nx + i]) ) / (1 + (bz[j * nx + i]/bh[j * nx + i])*(bz[j * nx + i]/bh[j * nx + i]))) *(180./PI);                  err += (1/(1+((bh[j * nx + i]*bh[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i]))))*(1/(1+((bh[j * nx + i]*bh[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i])))) *
                   ( ((bh_err[j * nx + i]*bh_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i])) +
                    ((bh[j * nx + i]*bh[j * nx + i]*bz_err[j * nx + i]*bz_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i]*bz[j * nx + i]*bz[j * nx + i])) );
                     count_mask++;                     count_mask++;
                   }                   }
               }               }
           }           }
  
      *mean_gamma_ptr = sum/count_mask;      *mean_gamma_ptr = sum/count_mask;
      *mean_gamma_err_ptr = (sqrt(err*err))/(count_mask*100.); // error in the quantity (sum)/(count_mask)      *mean_gamma_err_ptr = (sqrt(err)/(count_mask))*(180./PI);
      printf("MEANGAM=%f\n",*mean_gamma_ptr);      //printf("MEANGAM=%f\n",*mean_gamma_ptr);
      printf("MEANGAM_err=%f\n",*mean_gamma_err_ptr);      //printf("MEANGAM_err=%f\n",*mean_gamma_err_ptr);
      return 0;      return 0;
 } }
  
Line 187  int computeGamma(float *bz_err, float *b
Line 207  int computeGamma(float *bz_err, float *b
 int computeB_total(float *bx_err, float *by_err, float *bz_err, float *bt_err, float *bx, float *by, float *bz, float *bt, int *dims, int *mask, int *bitmask) int computeB_total(float *bx_err, float *by_err, float *bz_err, float *bt_err, float *bx, float *by, float *bz, float *bt, int *dims, int *mask, int *bitmask)
 { {
  
     int nx = dims[0], ny = dims[1];      int nx = dims[0];
     int i, j, count_mask=0;      int ny = dims[1];
       int i = 0;
       int j = 0;
       int count_mask = 0;
  
     if (nx <= 0 || ny <= 0) return 1;     if (nx <= 0 || ny <= 0) return 1;
  
Line 196  int computeB_total(float *bx_err, float
Line 219  int computeB_total(float *bx_err, float
           {           {
             for (j = 0; j < ny; j++)             for (j = 0; j < ny; j++)
               {               {
                 if isnan(bx[j * nx + i]) continue;              if isnan(bx[j * nx + i])
                 if isnan(by[j * nx + i]) continue;              {
                 if isnan(bz[j * nx + i]) continue;                  bt[j * nx + i] = NAN;
                   bt_err[j * nx + i] = NAN;
                   continue;
               }
               if isnan(by[j * nx + i])
               {
                   bt[j * nx + i] = NAN;
                   bt_err[j * nx + i] = NAN;
                   continue;
               }
               if isnan(bz[j * nx + i])
               {
                   bt[j * nx + i] = NAN;
                   bt_err[j * nx + i] = NAN;
                   continue;
               }
                 bt[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]);                 bt[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]);
                 bt_err[j * nx + i]=sqrt(bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i] + by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]*bz_err[j * nx + i]*bz_err[j * nx + i] )/bt[j * nx + i];                 bt_err[j * nx + i]=sqrt(bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i] + by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]*bz_err[j * nx + i]*bz_err[j * nx + i] )/bt[j * nx + i];
               }               }
Line 209  int computeB_total(float *bx_err, float
Line 247  int computeB_total(float *bx_err, float
 /*===========================================*/ /*===========================================*/
 /* Example function 5:  Derivative of B_Total SQRT( (dBt/dx)^2 + (dBt/dy)^2 ) */ /* Example function 5:  Derivative of B_Total SQRT( (dBt/dx)^2 + (dBt/dy)^2 ) */
  
 int computeBtotalderivative(float *bt, int *dims, float *mean_derivative_btotal_ptr, int *mask, int *bitmask, float *derx_bt, float *dery_bt, float *bt_err, float *mean_derivative_btotal_err_ptr)  int computeBtotalderivative(float *bt, int *dims, float *mean_derivative_btotal_ptr, int *mask, int *bitmask, float *derx_bt, float *dery_bt, float *bt_err, float *mean_derivative_btotal_err_ptr, float *err_termAt, float *err_termBt)
 { {
  
     int nx = dims[0], ny = dims[1];      int nx = dims[0];
     int i, j, count_mask=0;      int ny = dims[1];
       int i = 0;
     if (nx <= 0 || ny <= 0) return 1;      int j = 0;
       int count_mask = 0;
       double sum = 0.0;
       double err = 0.0;
     *mean_derivative_btotal_ptr = 0.0;     *mean_derivative_btotal_ptr = 0.0;
     float sum, err = 0.0;  
  
       if (nx <= 0 || ny <= 0) return 1;
  
         /* brute force method of calculating the derivative (no consideration for edges) */         /* brute force method of calculating the derivative (no consideration for edges) */
         for (i = 1; i <= nx-2; i++)         for (i = 1; i <= nx-2; i++)
Line 227  int computeBtotalderivative(float *bt, i
Line 267  int computeBtotalderivative(float *bt, i
             for (j = 0; j <= ny-1; j++)             for (j = 0; j <= ny-1; j++)
               {               {
                 derx_bt[j * nx + i] = (bt[j * nx + i+1] - bt[j * nx + i-1])*0.5;                 derx_bt[j * nx + i] = (bt[j * nx + i+1] - bt[j * nx + i-1])*0.5;
              err_termAt[j * nx + i] = (((bt[j * nx + (i+1)]-bt[j * nx + (i-1)])*(bt[j * nx + (i+1)]-bt[j * nx + (i-1)])) * (bt_err[j * nx + (i+1)]*bt_err[j * nx + (i+1)] + bt_err[j * nx + (i-1)]*bt_err[j * nx + (i-1)])) ;
               }               }
           }           }
  
Line 236  int computeBtotalderivative(float *bt, i
Line 277  int computeBtotalderivative(float *bt, i
             for (j = 1; j <= ny-2; j++)             for (j = 1; j <= ny-2; j++)
               {               {
                 dery_bt[j * nx + i] = (bt[(j+1) * nx + i] - bt[(j-1) * nx + i])*0.5;                 dery_bt[j * nx + i] = (bt[(j+1) * nx + i] - bt[(j-1) * nx + i])*0.5;
              err_termBt[j * nx + i] = (((bt[(j+1) * nx + i]-bt[(j-1) * nx + i])*(bt[(j+1) * nx + i]-bt[(j-1) * nx + i])) * (bt_err[(j+1) * nx + i]*bt_err[(j+1) * nx + i] + bt_err[(j-1) * nx + i]*bt_err[(j-1) * nx + i])) ;
               }               }
           }           }
  
       /* consider the edges for the arrays that contribute to the variable "sum" in the computation below.
         /* consider the edges */      ignore the edges for the error terms as those arrays have been initialized to zero.
       this is okay because the error term will ultimately not include the edge pixels as they are selected out by the mask and bitmask arrays.*/
         i=0;         i=0;
         for (j = 0; j <= ny-1; j++)         for (j = 0; j <= ny-1; j++)
           {           {
Line 265  int computeBtotalderivative(float *bt, i
Line 308  int computeBtotalderivative(float *bt, i
              dery_bt[j * nx + i] = ( (3*bt[j * nx + i]) + (-4*bt[(j-1) * nx + i]) - (-bt[(j-2) * nx + i]) )*0.5;              dery_bt[j * nx + i] = ( (3*bt[j * nx + i]) + (-4*bt[(j-1) * nx + i]) - (-bt[(j-2) * nx + i]) )*0.5;
           }           }
  
       // Calculate the sum only
         for (i = 0; i <= nx-1; i++)      for (i = 1; i <= nx-2; i++)
           {           {
             for (j = 0; j <= ny-1; j++)          for (j = 1; j <= ny-2; j++)
             {             {
                if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;                if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;
               if ( (derx_bt[j * nx + i] + dery_bt[j * nx + i]) == 0) continue;
               if isnan(bt[j * nx + i])      continue;
               if isnan(bt[(j+1) * nx + i])  continue;
               if isnan(bt[(j-1) * nx + i])  continue;
               if isnan(bt[j * nx + i-1])    continue;
               if isnan(bt[j * nx + i+1])    continue;
               if isnan(bt_err[j * nx + i])  continue;
                if isnan(derx_bt[j * nx + i]) continue;                if isnan(derx_bt[j * nx + i]) continue;
                if isnan(dery_bt[j * nx + i]) continue;                if isnan(dery_bt[j * nx + i]) continue;
                sum += sqrt( derx_bt[j * nx + i]*derx_bt[j * nx + i]  + dery_bt[j * nx + i]*dery_bt[j * nx + i]  ); /* Units of Gauss */                sum += sqrt( derx_bt[j * nx + i]*derx_bt[j * nx + i]  + dery_bt[j * nx + i]*dery_bt[j * nx + i]  ); /* Units of Gauss */
                err += (2.0)*bt_err[j * nx + i]*bt_err[j * nx + i];              err += err_termBt[j * nx + i] / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i]  + dery_bt[j * nx + i]*dery_bt[j * nx + i]  ))+
                      err_termAt[j * nx + i] / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i]  + dery_bt[j * nx + i]*dery_bt[j * nx + i]  )) ;
                count_mask++;                count_mask++;
             }             }
           }           }
  
         *mean_derivative_btotal_ptr     = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram      *mean_derivative_btotal_ptr     = (sum)/(count_mask);
         *mean_derivative_btotal_err_ptr = (sqrt(err))/(count_mask); // error in the quantity (sum)/(count_mask)      *mean_derivative_btotal_err_ptr = (sqrt(err))/(count_mask);
         printf("MEANGBT=%f\n",*mean_derivative_btotal_ptr);      //printf("MEANGBT=%f\n",*mean_derivative_btotal_ptr);
         printf("MEANGBT_err=%f\n",*mean_derivative_btotal_err_ptr);      //printf("MEANGBT_err=%f\n",*mean_derivative_btotal_err_ptr);
   
         return 0;         return 0;
 } }
  
Line 290  int computeBtotalderivative(float *bt, i
Line 342  int computeBtotalderivative(float *bt, i
 /*===========================================*/ /*===========================================*/
 /* Example function 6:  Derivative of Bh SQRT( (dBh/dx)^2 + (dBh/dy)^2 ) */ /* Example function 6:  Derivative of Bh SQRT( (dBh/dx)^2 + (dBh/dy)^2 ) */
  
 int computeBhderivative(float *bh, float *bh_err, int *dims, float *mean_derivative_bh_ptr, float *mean_derivative_bh_err_ptr, int *mask, int *bitmask, float *derx_bh, float *dery_bh)  int computeBhderivative(float *bh, float *bh_err, int *dims, float *mean_derivative_bh_ptr, float *mean_derivative_bh_err_ptr, int *mask, int *bitmask, float *derx_bh, float *dery_bh, float *err_termAh, float *err_termBh)
 { {
  
         int nx = dims[0], ny = dims[1];      int nx = dims[0];
         int i, j, count_mask=0;      int ny = dims[1];
       int i = 0;
       int j = 0;
       int count_mask = 0;
       double sum= 0.0;
       double err =0.0;
       *mean_derivative_bh_ptr = 0.0;
  
         if (nx <= 0 || ny <= 0) return 1;         if (nx <= 0 || ny <= 0) return 1;
  
         *mean_derivative_bh_ptr = 0.0;  
         float sum,err = 0.0;  
   
         /* brute force method of calculating the derivative (no consideration for edges) */         /* brute force method of calculating the derivative (no consideration for edges) */
         for (i = 1; i <= nx-2; i++)         for (i = 1; i <= nx-2; i++)
           {           {
             for (j = 0; j <= ny-1; j++)             for (j = 0; j <= ny-1; j++)
               {               {
                 derx_bh[j * nx + i] = (bh[j * nx + i+1] - bh[j * nx + i-1])*0.5;                 derx_bh[j * nx + i] = (bh[j * nx + i+1] - bh[j * nx + i-1])*0.5;
              err_termAh[j * nx + i] = (((bh[j * nx + (i+1)]-bh[j * nx + (i-1)])*(bh[j * nx + (i+1)]-bh[j * nx + (i-1)])) * (bh_err[j * nx + (i+1)]*bh_err[j * nx + (i+1)] + bh_err[j * nx + (i-1)]*bh_err[j * nx + (i-1)]));
               }               }
           }           }
  
Line 316  int computeBhderivative(float *bh, float
Line 372  int computeBhderivative(float *bh, float
             for (j = 1; j <= ny-2; j++)             for (j = 1; j <= ny-2; j++)
               {               {
                 dery_bh[j * nx + i] = (bh[(j+1) * nx + i] - bh[(j-1) * nx + i])*0.5;                 dery_bh[j * nx + i] = (bh[(j+1) * nx + i] - bh[(j-1) * nx + i])*0.5;
             err_termBh[j * nx + i] = (((bh[ (j+1) * nx + i]-bh[(j-1) * nx + i])*(bh[(j+1) * nx + i]-bh[(j-1) * nx + i])) * (bh_err[(j+1) * nx + i]*bh_err[(j+1) * nx + i] + bh_err[(j-1) * nx + i]*bh_err[(j-1) * nx + i]));
               }               }
           }           }
  
       /* consider the edges for the arrays that contribute to the variable "sum" in the computation below.
         /* consider the edges */      ignore the edges for the error terms as those arrays have been initialized to zero.
       this is okay because the error term will ultimately not include the edge pixels as they are selected out by the mask and bitmask arrays.*/
         i=0;         i=0;
         for (j = 0; j <= ny-1; j++)         for (j = 0; j <= ny-1; j++)
           {           {
Line 351  int computeBhderivative(float *bh, float
Line 409  int computeBhderivative(float *bh, float
             for (j = 0; j <= ny-1; j++)             for (j = 0; j <= ny-1; j++)
             {             {
                if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;                if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;
               if ( (derx_bh[j * nx + i] + dery_bh[j * nx + i]) == 0) continue;
               if isnan(bh[j * nx + i])      continue;
               if isnan(bh[(j+1) * nx + i])  continue;
               if isnan(bh[(j-1) * nx + i])  continue;
               if isnan(bh[j * nx + i-1])    continue;
               if isnan(bh[j * nx + i+1])    continue;
               if isnan(bh_err[j * nx + i])  continue;
                if isnan(derx_bh[j * nx + i]) continue;                if isnan(derx_bh[j * nx + i]) continue;
                if isnan(dery_bh[j * nx + i]) continue;                if isnan(dery_bh[j * nx + i]) continue;
                sum += sqrt( derx_bh[j * nx + i]*derx_bh[j * nx + i]  + dery_bh[j * nx + i]*dery_bh[j * nx + i]  ); /* Units of Gauss */                sum += sqrt( derx_bh[j * nx + i]*derx_bh[j * nx + i]  + dery_bh[j * nx + i]*dery_bh[j * nx + i]  ); /* Units of Gauss */
                err += (2.0)*bh_err[j * nx + i]*bh_err[j * nx + i];              err += err_termBh[j * nx + i] / (16.0*( derx_bh[j * nx + i]*derx_bh[j * nx + i]  + dery_bh[j * nx + i]*dery_bh[j * nx + i]  ))+
                      err_termAh[j * nx + i] / (16.0*( derx_bh[j * nx + i]*derx_bh[j * nx + i]  + dery_bh[j * nx + i]*dery_bh[j * nx + i]  )) ;
                count_mask++;                count_mask++;
             }             }
           }           }
  
         *mean_derivative_bh_ptr     = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram         *mean_derivative_bh_ptr     = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram
         *mean_derivative_bh_err_ptr = (sqrt(err))/(count_mask); // error in the quantity (sum)/(count_mask)         *mean_derivative_bh_err_ptr = (sqrt(err))/(count_mask); // error in the quantity (sum)/(count_mask)
         printf("MEANGBH=%f\n",*mean_derivative_bh_ptr);      //printf("MEANGBH=%f\n",*mean_derivative_bh_ptr);
         printf("MEANGBH_err=%f\n",*mean_derivative_bh_err_ptr);      //printf("MEANGBH_err=%f\n",*mean_derivative_bh_err_ptr);
  
         return 0;         return 0;
 } }
Line 370  int computeBhderivative(float *bh, float
Line 436  int computeBhderivative(float *bh, float
 /*===========================================*/ /*===========================================*/
 /* Example function 7:  Derivative of B_vertical SQRT( (dBz/dx)^2 + (dBz/dy)^2 ) */ /* Example function 7:  Derivative of B_vertical SQRT( (dBz/dx)^2 + (dBz/dy)^2 ) */
  
 int computeBzderivative(float *bz, float *bz_err, int *dims, float *mean_derivative_bz_ptr, float *mean_derivative_bz_err_ptr, int *mask, int *bitmask, float *derx_bz, float *dery_bz)  int computeBzderivative(float *bz, float *bz_err, int *dims, float *mean_derivative_bz_ptr, float *mean_derivative_bz_err_ptr, int *mask, int *bitmask, float *derx_bz, float *dery_bz, float *err_termA, float *err_termB)
 { {
  
         int nx = dims[0], ny = dims[1];      int nx = dims[0];
         int i, j, count_mask=0;      int ny = dims[1];
       int i = 0;
       int j = 0;
       int count_mask = 0;
       double sum = 0.0;
       double err = 0.0;
       *mean_derivative_bz_ptr = 0.0;
  
         if (nx <= 0 || ny <= 0) return 1;         if (nx <= 0 || ny <= 0) return 1;
  
         *mean_derivative_bz_ptr = 0.0;  
         float sum,err = 0.0;  
   
         /* brute force method of calculating the derivative (no consideration for edges) */         /* brute force method of calculating the derivative (no consideration for edges) */
         for (i = 1; i <= nx-2; i++)         for (i = 1; i <= nx-2; i++)
           {           {
             for (j = 0; j <= ny-1; j++)             for (j = 0; j <= ny-1; j++)
               {               {
                 if isnan(bz[j * nx + i]) continue;  
                 derx_bz[j * nx + i] = (bz[j * nx + i+1] - bz[j * nx + i-1])*0.5;                 derx_bz[j * nx + i] = (bz[j * nx + i+1] - bz[j * nx + i-1])*0.5;
              err_termA[j * nx + i] = (((bz[j * nx + (i+1)]-bz[j * nx + (i-1)])*(bz[j * nx + (i+1)]-bz[j * nx + (i-1)])) * (bz_err[j * nx + (i+1)]*bz_err[j * nx + (i+1)] + bz_err[j * nx + (i-1)]*bz_err[j * nx + (i-1)]));
               }               }
           }           }
  
Line 396  int computeBzderivative(float *bz, float
Line 465  int computeBzderivative(float *bz, float
           {           {
             for (j = 1; j <= ny-2; j++)             for (j = 1; j <= ny-2; j++)
               {               {
                 if isnan(bz[j * nx + i]) continue;  
                 dery_bz[j * nx + i] = (bz[(j+1) * nx + i] - bz[(j-1) * nx + i])*0.5;                 dery_bz[j * nx + i] = (bz[(j+1) * nx + i] - bz[(j-1) * nx + i])*0.5;
              err_termB[j * nx + i] = (((bz[(j+1) * nx + i]-bz[(j-1) * nx + i])*(bz[(j+1) * nx + i]-bz[(j-1) * nx + i])) * (bz_err[(j+1) * nx + i]*bz_err[(j+1) * nx + i] + bz_err[(j-1) * nx + i]*bz_err[(j-1) * nx + i]));
               }               }
           }           }
  
       /* consider the edges for the arrays that contribute to the variable "sum" in the computation below.
         /* consider the edges */      ignore the edges for the error terms as those arrays have been initialized to zero.
       this is okay because the error term will ultimately not include the edge pixels as they are selected out by the mask and bitmask arrays.*/
         i=0;         i=0;
         for (j = 0; j <= ny-1; j++)         for (j = 0; j <= ny-1; j++)
           {           {
              if isnan(bz[j * nx + i]) continue;  
              derx_bz[j * nx + i] = ( (-3*bz[j * nx + i]) + (4*bz[j * nx + (i+1)]) - (bz[j * nx + (i+2)]) )*0.5;              derx_bz[j * nx + i] = ( (-3*bz[j * nx + i]) + (4*bz[j * nx + (i+1)]) - (bz[j * nx + (i+2)]) )*0.5;
           }           }
  
         i=nx-1;         i=nx-1;
         for (j = 0; j <= ny-1; j++)         for (j = 0; j <= ny-1; j++)
           {           {
              if isnan(bz[j * nx + i]) continue;  
              derx_bz[j * nx + i] = ( (3*bz[j * nx + i]) + (-4*bz[j * nx + (i-1)]) - (-bz[j * nx + (i-2)]) )*0.5;              derx_bz[j * nx + i] = ( (3*bz[j * nx + i]) + (-4*bz[j * nx + (i-1)]) - (-bz[j * nx + (i-2)]) )*0.5;
           }           }
  
         j=0;         j=0;
         for (i = 0; i <= nx-1; i++)         for (i = 0; i <= nx-1; i++)
           {           {
              if isnan(bz[j * nx + i]) continue;  
              dery_bz[j * nx + i] = ( (-3*bz[j*nx + i]) + (4*bz[(j+1) * nx + i]) - (bz[(j+2) * nx + i]) )*0.5;              dery_bz[j * nx + i] = ( (-3*bz[j*nx + i]) + (4*bz[(j+1) * nx + i]) - (bz[(j+2) * nx + i]) )*0.5;
           }           }
  
         j=ny-1;         j=ny-1;
         for (i = 0; i <= nx-1; i++)         for (i = 0; i <= nx-1; i++)
           {           {
              if isnan(bz[j * nx + i]) continue;  
              dery_bz[j * nx + i] = ( (3*bz[j * nx + i]) + (-4*bz[(j-1) * nx + i]) - (-bz[(j-2) * nx + i]) )*0.5;              dery_bz[j * nx + i] = ( (3*bz[j * nx + i]) + (-4*bz[(j-1) * nx + i]) - (-bz[(j-2) * nx + i]) )*0.5;
           }           }
  
Line 436  int computeBzderivative(float *bz, float
Line 502  int computeBzderivative(float *bz, float
           {           {
             for (j = 0; j <= ny-1; j++)             for (j = 0; j <= ny-1; j++)
             {             {
                // if ( (derx_bz[j * nx + i]-dery_bz[j * nx + i]) == 0) continue;  
                if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;                if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;
               if ( (derx_bz[j * nx + i] + dery_bz[j * nx + i]) == 0) continue;
                if isnan(bz[j * nx + i]) continue;                if isnan(bz[j * nx + i]) continue;
                //if isnan(bz_err[j * nx + i]) continue;              if isnan(bz[(j+1) * nx + i])  continue;
               if isnan(bz[(j-1) * nx + i])  continue;
               if isnan(bz[j * nx + i-1])    continue;
               if isnan(bz[j * nx + i+1])    continue;
               if isnan(bz_err[j * nx + i])  continue;
                if isnan(derx_bz[j * nx + i]) continue;                if isnan(derx_bz[j * nx + i]) continue;
                if isnan(dery_bz[j * nx + i]) continue;                if isnan(dery_bz[j * nx + i]) continue;
                sum += sqrt( derx_bz[j * nx + i]*derx_bz[j * nx + i]  + dery_bz[j * nx + i]*dery_bz[j * nx + i]  ); /* Units of Gauss */                sum += sqrt( derx_bz[j * nx + i]*derx_bz[j * nx + i]  + dery_bz[j * nx + i]*dery_bz[j * nx + i]  ); /* Units of Gauss */
                err += 2.0*bz_err[j * nx + i]*bz_err[j * nx + i];              err += err_termB[j * nx + i] / (16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i]  + dery_bz[j * nx + i]*dery_bz[j * nx + i]  )) +
                      err_termA[j * nx + i] / (16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i]  + dery_bz[j * nx + i]*dery_bz[j * nx + i]  )) ;
                count_mask++;                count_mask++;
             }             }
           }           }
  
         *mean_derivative_bz_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram         *mean_derivative_bz_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram
         *mean_derivative_bz_err_ptr = (sqrt(err))/(count_mask); // error in the quantity (sum)/(count_mask)         *mean_derivative_bz_err_ptr = (sqrt(err))/(count_mask); // error in the quantity (sum)/(count_mask)
         printf("MEANGBZ=%f\n",*mean_derivative_bz_ptr);      //printf("MEANGBZ=%f\n",*mean_derivative_bz_ptr);
         printf("MEANGBZ_err=%f\n",*mean_derivative_bz_err_ptr);      //printf("MEANGBZ_err=%f\n",*mean_derivative_bz_err_ptr);
  
         return 0;         return 0;
 } }
Line 494  int computeBzderivative(float *bz, float
Line 565  int computeBzderivative(float *bz, float
 //              float *noiseby, float *noisebz) //              float *noiseby, float *noisebz)
  
 int computeJz(float *bx_err, float *by_err, float *bx, float *by, int *dims, float *jz, float *jz_err, float *jz_err_squared, int computeJz(float *bx_err, float *by_err, float *bx, float *by, int *dims, float *jz, float *jz_err, float *jz_err_squared,
               int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery)                int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery, float *err_term1, float *err_term2)
  
  
 { {
         int nx = dims[0], ny = dims[1];      int nx = dims[0];
         int i, j, count_mask=0;      int ny = dims[1];
       int i = 0;
       int j = 0;
       int count_mask = 0;
  
         if (nx <= 0 || ny <= 0) return 1;         if (nx <= 0 || ny <= 0) return 1;
         float curl=0.0, us_i=0.0,test_perimeter=0.0,mean_curl=0.0;  
   
  
         /* Calculate the derivative*/         /* Calculate the derivative*/
         /* brute force method of calculating the derivative (no consideration for edges) */         /* brute force method of calculating the derivative (no consideration for edges) */
  
   
         for (i = 1; i <= nx-2; i++)         for (i = 1; i <= nx-2; i++)
           {           {
             for (j = 0; j <= ny-1; j++)             for (j = 0; j <= ny-1; j++)
               {               {
                  if isnan(by[j * nx + i]) continue;  
                  derx[j * nx + i] = (by[j * nx + i+1] - by[j * nx + i-1])*0.5;                  derx[j * nx + i] = (by[j * nx + i+1] - by[j * nx + i-1])*0.5;
              err_term1[j * nx + i] = (by_err[j * nx + i+1])*(by_err[j * nx + i+1]) + (by_err[j * nx + i-1])*(by_err[j * nx + i-1]);
               }               }
           }           }
  
Line 522  int computeJz(float *bx_err, float *by_e
Line 593  int computeJz(float *bx_err, float *by_e
           {           {
             for (j = 1; j <= ny-2; j++)             for (j = 1; j <= ny-2; j++)
               {               {
                  if isnan(bx[j * nx + i]) continue;  
                  dery[j * nx + i] = (bx[(j+1) * nx + i] - bx[(j-1) * nx + i])*0.5;                  dery[j * nx + i] = (bx[(j+1) * nx + i] - bx[(j-1) * nx + i])*0.5;
              err_term2[j * nx + i] = (bx_err[(j+1) * nx + i])*(bx_err[(j+1) * nx + i]) + (bx_err[(j-1) * nx + i])*(bx_err[(j-1) * nx + i]);
               }               }
           }           }
  
         // consider the edges      /* consider the edges for the arrays that contribute to the variable "sum" in the computation below.
       ignore the edges for the error terms as those arrays have been initialized to zero.
       this is okay because the error term will ultimately not include the edge pixels as they are selected out by the mask and bitmask arrays.*/
   
         i=0;         i=0;
         for (j = 0; j <= ny-1; j++)         for (j = 0; j <= ny-1; j++)
           {           {
              if isnan(by[j * nx + i]) continue;  
              derx[j * nx + i] = ( (-3*by[j * nx + i]) + (4*by[j * nx + (i+1)]) - (by[j * nx + (i+2)]) )*0.5;              derx[j * nx + i] = ( (-3*by[j * nx + i]) + (4*by[j * nx + (i+1)]) - (by[j * nx + (i+2)]) )*0.5;
           }           }
  
         i=nx-1;         i=nx-1;
         for (j = 0; j <= ny-1; j++)         for (j = 0; j <= ny-1; j++)
           {           {
              if isnan(by[j * nx + i]) continue;  
              derx[j * nx + i] = ( (3*by[j * nx + i]) + (-4*by[j * nx + (i-1)]) - (-by[j * nx + (i-2)]) )*0.5;              derx[j * nx + i] = ( (3*by[j * nx + i]) + (-4*by[j * nx + (i-1)]) - (-by[j * nx + (i-2)]) )*0.5;
           }           }
  
         j=0;         j=0;
         for (i = 0; i <= nx-1; i++)         for (i = 0; i <= nx-1; i++)
           {           {
              if isnan(bx[j * nx + i]) continue;  
              dery[j * nx + i] = ( (-3*bx[j*nx + i]) + (4*bx[(j+1) * nx + i]) - (bx[(j+2) * nx + i]) )*0.5;              dery[j * nx + i] = ( (-3*bx[j*nx + i]) + (4*bx[(j+1) * nx + i]) - (bx[(j+2) * nx + i]) )*0.5;
           }           }
  
         j=ny-1;         j=ny-1;
         for (i = 0; i <= nx-1; i++)         for (i = 0; i <= nx-1; i++)
           {           {
              if isnan(bx[j * nx + i]) continue;  
              dery[j * nx + i] = ( (3*bx[j * nx + i]) + (-4*bx[(j-1) * nx + i]) - (-bx[(j-2) * nx + i]) )*0.5;              dery[j * nx + i] = ( (3*bx[j * nx + i]) + (-4*bx[(j-1) * nx + i]) - (-bx[(j-2) * nx + i]) )*0.5;
           }           }
  
Line 563  int computeJz(float *bx_err, float *by_e
Line 633  int computeJz(float *bx_err, float *by_e
             {             {
                // calculate jz at all points                // calculate jz at all points
                jz[j * nx + i] = (derx[j * nx + i]-dery[j * nx + i]);       // jz is in units of Gauss/pix                jz[j * nx + i] = (derx[j * nx + i]-dery[j * nx + i]);       // jz is in units of Gauss/pix
                jz_err[j * nx + i]=0.5*sqrt( (bx_err[(j+1) * nx + i]*bx_err[(j+1) * nx + i]) + (bx_err[(j-1) * nx + i]*bx_err[(j-1) * nx + i]) +              jz_err[j * nx + i]        = 0.5*sqrt( err_term1[j * nx + i] + err_term2[j * nx + i] ) ;
                                             (by_err[j * nx + (i+1)]*by_err[j * nx + (i+1)]) + (by_err[j * nx + (i-1)]*by_err[j * nx + (i-1)]) ) ;  
                jz_err_squared[j * nx + i]=(jz_err[j * nx + i]*jz_err[j * nx + i]);                jz_err_squared[j * nx + i]=(jz_err[j * nx + i]*jz_err[j * nx + i]);
                count_mask++;                count_mask++;
             }             }
           }           }
   
         return 0;         return 0;
 } }
  
 /*===========================================*/ /*===========================================*/
  
   
 /* Example function 9:  Compute quantities on Jz array */ /* Example function 9:  Compute quantities on Jz array */
 // Compute mean and total current on Jz array. // Compute mean and total current on Jz array.
  
Line 585  int computeJzsmooth(float *bx, float *by
Line 652  int computeJzsmooth(float *bx, float *by
  
 { {
  
         int nx = dims[0], ny = dims[1];      int nx = dims[0];
         int i, j, count_mask=0;      int ny = dims[1];
       int i = 0;
       int j = 0;
       int count_mask = 0;
           double curl = 0.0;
       double us_i = 0.0;
       double err = 0.0;
  
         if (nx <= 0 || ny <= 0) return 1;         if (nx <= 0 || ny <= 0) return 1;
  
         float curl,us_i,test_perimeter,mean_curl,err=0.0;  
   
   
         /* At this point, use the smoothed Jz array with a Gaussian (FWHM of 4 pix and truncation width of 12 pixels) but keep the original array dimensions*/         /* At this point, use the smoothed Jz array with a Gaussian (FWHM of 4 pix and truncation width of 12 pixels) but keep the original array dimensions*/
         for (i = 0; i <= nx-1; i++)         for (i = 0; i <= nx-1; i++)
           {           {
Line 609  int computeJzsmooth(float *bx, float *by
Line 679  int computeJzsmooth(float *bx, float *by
             }             }
           }           }
  
         /* Calculate mean vertical current density (mean_curl) and total unsigned vertical current (us_i) using smoothed Jz array and continue conditions above */      /* Calculate mean vertical current density (mean_jz) and total unsigned vertical current (us_i) using smoothed Jz array and continue conditions above */
         *mean_jz_ptr     = curl/(count_mask);        /* mean_jz gets populated as MEANJZD */         *mean_jz_ptr     = curl/(count_mask);        /* mean_jz gets populated as MEANJZD */
         *mean_jz_err_ptr = (sqrt(err))*fabs(((rsun_obs/rsun_ref)*(0.00010)*(1/MUNAUGHT)*(1000.))/(count_mask)); // error in the quantity MEANJZD      *mean_jz_err_ptr = (sqrt(err)/count_mask)*((1/cdelt1)*(rsun_obs/rsun_ref)*(0.00010)*(1/MUNAUGHT)*(1000.)); // error in the quantity MEANJZD
  
         *us_i_ptr        = (us_i);                   /* us_i gets populated as TOTUSJZ */         *us_i_ptr        = (us_i);                   /* us_i gets populated as TOTUSJZ */
         *us_i_err_ptr    = (sqrt(err))*fabs((cdelt1/1)*(rsun_ref/rsun_obs)*(0.00010)*(1/MUNAUGHT)); // error in the quantity TOTUSJZ      *us_i_err_ptr    = (sqrt(err))*((cdelt1/1)*(rsun_ref/rsun_obs)*(0.00010)*(1/MUNAUGHT)); // error in the quantity TOTUSJZ
  
         printf("MEANJZD=%f\n",*mean_jz_ptr);      //printf("MEANJZD=%f\n",*mean_jz_ptr);
         printf("MEANJZD_err=%f\n",*mean_jz_err_ptr);      //printf("MEANJZD_err=%f\n",*mean_jz_err_ptr);
  
         printf("TOTUSJZ=%g\n",*us_i_ptr);      //printf("TOTUSJZ=%g\n",*us_i_ptr);
         printf("TOTUSJZ_err=%g\n",*us_i_err_ptr);      //printf("TOTUSJZ_err=%g\n",*us_i_err_ptr);
  
         return 0;         return 0;
  
Line 631  int computeJzsmooth(float *bx, float *by
Line 701  int computeJzsmooth(float *bx, float *by
 /* Example function 10:  Twist Parameter, alpha */ /* Example function 10:  Twist Parameter, alpha */
  
 // The twist parameter, alpha, is defined as alpha = Jz/Bz. In this case, the calculation // The twist parameter, alpha, is defined as alpha = Jz/Bz. In this case, the calculation
 // for alpha is calculated in the following way (different from Leka and Barnes' approach):  // for alpha is weighted by Bz (following Hagino et al., http://adsabs.harvard.edu/abs/2004PASJ...56..831H):
  
        // (sum of all positive Bz + abs(sum of all negative Bz)) = avg Bz  // numerator   = sum of all Jz*Bz
        // (abs(sum of all Jz at positive Bz) + abs(sum of all Jz at negative Bz)) = avg Jz  // denominator = sum of Bz*Bz
        // avg alpha = avg Jz / avg Bz  // alpha       = numerator/denominator
   
 // The sign is assigned as follows:  
 // If the sum of all Bz is greater than 0, then evaluate the sum of Jz at the positive Bz pixels.  
 // If this value is > 0, then alpha is > 0.  
 // If this value is < 0, then alpha is <0.  
 //  
 // If the sum of all Bz is less than 0, then evaluate the sum of Jz at the negative Bz pixels.  
 // If this value is > 0, then alpha is < 0.  
 // If this value is < 0, then alpha is > 0.  
  
 // The units of alpha are in 1/Mm // The units of alpha are in 1/Mm
 // The units of Jz are in Gauss/pix; the units of Bz are in Gauss. // The units of Jz are in Gauss/pix; the units of Bz are in Gauss.
Line 656  int computeJzsmooth(float *bx, float *by
Line 717  int computeJzsmooth(float *bx, float *by
 int computeAlpha(float *jz_err, float *bz_err, float *bz, int *dims, float *jz, float *jz_smooth, float *mean_alpha_ptr, float *mean_alpha_err_ptr, int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) int computeAlpha(float *jz_err, float *bz_err, float *bz, int *dims, float *jz, float *jz_smooth, float *mean_alpha_ptr, float *mean_alpha_err_ptr, int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs)
  
 { {
         int nx = dims[0], ny = dims[1];      int nx                     = dims[0];
         int i, j, count_mask, a,b,c,d=0;      int ny                     = dims[1];
       int i                      = 0;
       int j                      = 0;
           double alpha_total         = 0.0;
       double C                   = ((1/cdelt1)*(rsun_obs/rsun_ref)*(1000000.));
       double total               = 0.0;
       double A                   = 0.0;
       double B                   = 0.0;
  
         if (nx <= 0 || ny <= 0) return 1;         if (nx <= 0 || ny <= 0) return 1;
   
         float aa, bb, cc, bznew, alpha2, sum1, sum2, sum3, sum4, sum, sum5, sum6, sum_err=0.0;  
   
         for (i = 1; i < nx-1; i++)         for (i = 1; i < nx-1; i++)
           {           {
             for (j = 1; j < ny-1; j++)             for (j = 1; j < ny-1; j++)
               {               {
                 if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;                 if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;
                 //if isnan(jz_smooth[j * nx + i]) continue;  
                 if isnan(jz[j * nx + i]) continue;                 if isnan(jz[j * nx + i]) continue;
                 if isnan(bz[j * nx + i]) continue;                 if isnan(bz[j * nx + i]) continue;
                 //if (jz_smooth[j * nx + i] == 0) continue;  
                 if (jz[j * nx + i]     == 0.0) continue;                 if (jz[j * nx + i]     == 0.0) continue;
                 if (bz_err[j * nx + i] == 0.0) continue;  
                 if (bz[j * nx + i]     == 0.0) continue;                 if (bz[j * nx + i]     == 0.0) continue;
                 if (bz[j * nx + i] >  0) sum1 += ( bz[j * nx + i] ); a++;              A += jz[j*nx+i]*bz[j*nx+i];
                 if (bz[j * nx + i] <= 0) sum2 += ( bz[j * nx + i] ); b++;              B += bz[j*nx+i]*bz[j*nx+i];
                 //if (bz[j * nx + i] >  0) sum3 += ( jz_smooth[j * nx + i]);  
                 //if (bz[j * nx + i] <= 0) sum4 += ( jz_smooth[j * nx + i]);  
                 if (bz[j * nx + i] >  0) sum3 += ( jz[j * nx + i] ); c++;  
                 if (bz[j * nx + i] <= 0) sum4 += ( jz[j * nx + i] ); d++;  
                 sum5    += bz[j * nx + i];  
                 /* sum_err is a fractional uncertainty */  
                 sum_err += sqrt(((jz_err[j * nx + i]*jz_err[j * nx + i])/(jz[j * nx + i]*jz[j * nx + i])) + ((bz_err[j * nx + i]*bz_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i]))) * fabs( ( (jz[j * nx + i]) / (bz[j * nx + i]) ) *(1/cdelt1)*(rsun_obs/rsun_ref)*(1000000.));  
                 count_mask++;  
               }               }
           }           }
  
         sum     = (((fabs(sum3))+(fabs(sum4)))/((fabs(sum2))+sum1))*((1/cdelt1)*(rsun_obs/rsun_ref)*(1000000.)); /* the units for (jz/bz) are 1/Mm */          for (i = 1; i < nx-1; i++)
       {
         /* Determine the sign of alpha */              for (j = 1; j < ny-1; j++)
         if ((sum5 > 0) && (sum3 >  0)) sum=sum;          {
         if ((sum5 > 0) && (sum3 <= 0)) sum=-sum;              if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;
         if ((sum5 < 0) && (sum4 <= 0)) sum=sum;              if isnan(jz[j * nx + i])   continue;
         if ((sum5 < 0) && (sum4 >  0)) sum=-sum;              if isnan(bz[j * nx + i])   continue;
               if (jz[j * nx + i] == 0.0) continue;
         *mean_alpha_ptr = sum; /* Units are 1/Mm */              if (bz[j * nx + i] == 0.0) continue;
         *mean_alpha_err_ptr    = (sqrt(sum_err*sum_err)) / ((a+b+c+d)*100.); // error in the quantity (sum)/(count_mask); factor of 100 comes from converting percent              total += bz[j*nx+i]*bz[j*nx+i]*jz_err[j*nx+i]*jz_err[j*nx+i] + (jz[j*nx+i]-2*bz[j*nx+i]*A/B)*(jz[j*nx+i]-2*bz[j*nx+i]*A/B)*bz_err[j*nx+i]*bz_err[j*nx+i];
           }
         printf("a=%d\n",a);      }
         printf("b=%d\n",b);  
         printf("d=%d\n",d);  
         printf("c=%d\n",c);  
  
         printf("MEANALP=%f\n",*mean_alpha_ptr);      /* Determine the absolute value of alpha. The units for alpha are 1/Mm */
         printf("MEANALP_err=%f\n",*mean_alpha_err_ptr);      alpha_total              = ((A/B)*C);
       *mean_alpha_ptr          = alpha_total;
       *mean_alpha_err_ptr      = (C/B)*(sqrt(total));
  
         return 0;         return 0;
 } }
Line 725  int computeHelicity(float *jz_err, float
Line 778  int computeHelicity(float *jz_err, float
  
 { {
  
         int nx = dims[0], ny = dims[1];      int nx         = dims[0];
         int i, j, count_mask=0;      int ny         = dims[1];
       int i          = 0;
       int j          = 0;
       int count_mask = 0;
           double sum     = 0.0;
           double sum2    = 0.0;
           double err     = 0.0;
  
         if (nx <= 0 || ny <= 0) return 1;         if (nx <= 0 || ny <= 0) return 1;
  
         float sum,sum2,sum_err=0.0;  
   
         for (i = 0; i < nx; i++)         for (i = 0; i < nx; i++)
         {         {
                 for (j = 0; j < ny; j++)                 for (j = 0; j < ny; j++)
Line 739  int computeHelicity(float *jz_err, float
Line 796  int computeHelicity(float *jz_err, float
                   if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;                   if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;
                   if isnan(jz[j * nx + i]) continue;                   if isnan(jz[j * nx + i]) continue;
                   if isnan(bz[j * nx + i]) continue;                   if isnan(bz[j * nx + i]) continue;
               if isnan(jz_err[j * nx + i]) continue;
               if isnan(bz_err[j * nx + i]) continue;
                   if (bz[j * nx + i] == 0.0) continue;                   if (bz[j * nx + i] == 0.0) continue;
                   if (jz[j * nx + i] == 0.0) continue;                   if (jz[j * nx + i] == 0.0) continue;
                   sum     +=     (jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); // contributes to MEANJZH and ABSNJZH                   sum     +=     (jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); // contributes to MEANJZH and ABSNJZH
                   sum2    += fabs(jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); // contributes to TOTUSJH                   sum2    += fabs(jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); // contributes to TOTUSJH
                   sum_err += sqrt(((jz_err[j * nx + i]*jz_err[j * nx + i])/(jz[j * nx + i]*jz[j * nx + i])) + ((bz_err[j * nx + i]*bz_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i]))) * fabs(jz[j * nx + i]*bz[j * nx + i]*(1/cdelt1)*(rsun_obs/rsun_ref));              err     += (jz_err[j * nx + i]*jz_err[j * nx + i]*bz[j * nx + i]*bz[j * nx + i]) + (bz_err[j * nx + i]*bz_err[j * nx + i]*jz[j * nx + i]*jz[j * nx + i]);
                   count_mask++;                   count_mask++;
                 }                 }
          }          }
Line 752  int computeHelicity(float *jz_err, float
Line 811  int computeHelicity(float *jz_err, float
         *total_us_ih_ptr      = sum2           ; /* Units are G^2 / m ; keyword is TOTUSJH */         *total_us_ih_ptr      = sum2           ; /* Units are G^2 / m ; keyword is TOTUSJH */
         *total_abs_ih_ptr     = fabs(sum)      ; /* Units are G^2 / m ; keyword is ABSNJZH */         *total_abs_ih_ptr     = fabs(sum)      ; /* Units are G^2 / m ; keyword is ABSNJZH */
  
         *mean_ih_err_ptr      = (sqrt(sum_err*sum_err)) / (count_mask*100.)    ;  // error in the quantity MEANJZH      *mean_ih_err_ptr      = (sqrt(err)/count_mask)*(1/cdelt1)*(rsun_obs/rsun_ref) ; // error in the quantity MEANJZH
         *total_us_ih_err_ptr  = (sqrt(sum_err*sum_err)) / (100.)               ;  // error in the quantity TOTUSJH      *total_us_ih_err_ptr  = (sqrt(err))*(1/cdelt1)*(rsun_obs/rsun_ref) ;            // error in the quantity TOTUSJH
         *total_abs_ih_err_ptr = (sqrt(sum_err*sum_err)) / (100.)               ;  // error in the quantity ABSNJZH      *total_abs_ih_err_ptr = (sqrt(err))*(1/cdelt1)*(rsun_obs/rsun_ref) ;            // error in the quantity ABSNJZH
  
         printf("MEANJZH=%f\n",*mean_ih_ptr);      //printf("MEANJZH=%f\n",*mean_ih_ptr);
         printf("MEANJZH_err=%f\n",*mean_ih_err_ptr);      //printf("MEANJZH_err=%f\n",*mean_ih_err_ptr);
  
         printf("TOTUSJH=%f\n",*total_us_ih_ptr);      //printf("TOTUSJH=%f\n",*total_us_ih_ptr);
         printf("TOTUSJH_err=%f\n",*total_us_ih_err_ptr);      //printf("TOTUSJH_err=%f\n",*total_us_ih_err_ptr);
  
         printf("ABSNJZH=%f\n",*total_abs_ih_ptr);      //printf("ABSNJZH=%f\n",*total_abs_ih_ptr);
         printf("ABSNJZH_err=%f\n",*total_abs_ih_err_ptr);      //printf("ABSNJZH_err=%f\n",*total_abs_ih_err_ptr);
  
         return 0;         return 0;
 } }
Line 772  int computeHelicity(float *jz_err, float
Line 831  int computeHelicity(float *jz_err, float
 /* Example function 12:  Sum of Absolute Value per polarity  */ /* Example function 12:  Sum of Absolute Value per polarity  */
  
 //  The Sum of the Absolute Value per polarity is defined as the following: //  The Sum of the Absolute Value per polarity is defined as the following:
 //  fabs(sum(jz gt 0)) + fabs(sum(jz lt 0)) and the units are in Amperes.  //  fabs(sum(jz gt 0)) + fabs(sum(jz lt 0)) and the units are in Amperes per square arcsecond.
 //  The units of jz are in G/pix. In this case, we would have the following: //  The units of jz are in G/pix. In this case, we would have the following:
 //  Jz = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS)(RSUN_REF/RSUN_OBS)(RSUN_OBS/RSUN_REF), //  Jz = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS)(RSUN_REF/RSUN_OBS)(RSUN_OBS/RSUN_REF),
 //     = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS) //     = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS)
Line 783  int computeSumAbsPerPolarity(float *jz_e
Line 842  int computeSumAbsPerPolarity(float *jz_e
                                                          int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs)                                                          int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs)
  
 { {
         int nx = dims[0], ny = dims[1];      int nx = dims[0];
         int i, j, count_mask=0;      int ny = dims[1];
       int i=0;
       int j=0;
       int count_mask=0;
       double sum1=0.0;
       double sum2=0.0;
       double err=0.0;
       *totaljzptr=0.0;
  
         if (nx <= 0 || ny <= 0) return 1;         if (nx <= 0 || ny <= 0) return 1;
  
         *totaljzptr=0.0;  
         float sum1,sum2,err=0.0;  
   
         for (i = 0; i < nx; i++)         for (i = 0; i < nx; i++)
           {           {
             for (j = 0; j < ny; j++)             for (j = 0; j < ny; j++)
               {               {
                 if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;                 if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;
                 if isnan(bz[j * nx + i]) continue;                 if isnan(bz[j * nx + i]) continue;
               if isnan(jz[j * nx + i]) continue;
                 if (bz[j * nx + i] >  0) sum1 += ( jz[j * nx + i])*(1/cdelt1)*(0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs);                 if (bz[j * nx + i] >  0) sum1 += ( jz[j * nx + i])*(1/cdelt1)*(0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs);
                 if (bz[j * nx + i] <= 0) sum2 += ( jz[j * nx + i])*(1/cdelt1)*(0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs);                 if (bz[j * nx + i] <= 0) sum2 += ( jz[j * nx + i])*(1/cdelt1)*(0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs);
                 err += (jz_err[j * nx + i]*jz_err[j * nx + i]);                 err += (jz_err[j * nx + i]*jz_err[j * nx + i]);
Line 804  int computeSumAbsPerPolarity(float *jz_e
Line 868  int computeSumAbsPerPolarity(float *jz_e
               }               }
           }           }
  
         *totaljzptr    = fabs(sum1) + fabs(sum2);  /* Units are A */      *totaljzptr    = fabs(sum1) + fabs(sum2);  /* Units are Amperes per arcsecond */
         *totaljz_err_ptr = sqrt(err)*(1/cdelt1)*fabs((0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs));         *totaljz_err_ptr = sqrt(err)*(1/cdelt1)*fabs((0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs));
         printf("SAVNCPP=%g\n",*totaljzptr);      //printf("SAVNCPP=%g\n",*totaljzptr);
         printf("SAVNCPP_err=%g\n",*totaljz_err_ptr);      //printf("SAVNCPP_err=%g\n",*totaljz_err_ptr);
  
         return 0;         return 0;
 } }
Line 830  int computeFreeEnergy(float *bx_err, flo
Line 894  int computeFreeEnergy(float *bx_err, flo
                                           float cdelt1, double rsun_ref, double rsun_obs)                                           float cdelt1, double rsun_ref, double rsun_obs)
  
 { {
         int nx = dims[0], ny = dims[1];      int nx = dims[0];
         int i, j, count_mask=0;      int ny = dims[1];
       int i = 0;
         if (nx <= 0 || ny <= 0) return 1;      int j = 0;
       int count_mask = 0;
       double sum = 0.0;
       double sum1 = 0.0;
       double err = 0.0;
         *totpotptr=0.0;         *totpotptr=0.0;
         *meanpotptr=0.0;         *meanpotptr=0.0;
         float sum,sum1,err=0.0;  
       if (nx <= 0 || ny <= 0) return 1;
  
         for (i = 0; i < nx; i++)         for (i = 0; i < nx; i++)
           {           {
Line 846  int computeFreeEnergy(float *bx_err, flo
Line 914  int computeFreeEnergy(float *bx_err, flo
                  if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;                  if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;
                  if isnan(bx[j * nx + i]) continue;                  if isnan(bx[j * nx + i]) continue;
                  if isnan(by[j * nx + i]) continue;                  if isnan(by[j * nx + i]) continue;
                  sum  += ( ((bpx[j * nx + i] - bx[j * nx + i])*(bpx[j * nx + i] - bx[j * nx + i])) + ((bpy[j * nx + i] - by[j * nx + i])*(bpy[j * nx + i] - by[j * nx + i])) )*(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0);              sum  += ( ((bx[j * nx + i] - bpx[j * nx + i])*(bx[j * nx + i] - bpx[j * nx + i])) + ((by[j * nx + i] - bpy[j * nx + i])*(by[j * nx + i] - bpy[j * nx + i])) )*(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0);
                  sum1 += ( ((bpx[j * nx + i] - bx[j * nx + i])*(bpx[j * nx + i] - bx[j * nx + i])) + ((bpy[j * nx + i] - by[j * nx + i])*(bpy[j * nx + i] - by[j * nx + i])) );              sum1 += (  ((bx[j * nx + i] - bpx[j * nx + i])*(bx[j * nx + i] - bpx[j * nx + i])) + ((by[j * nx + i] - bpy[j * nx + i])*(by[j * nx + i] - bpy[j * nx + i])) );
                  err  += (4.0*bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i]) + (4.0*by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i]);              err  += 4.0*(bx[j * nx + i] - bpx[j * nx + i])*(bx[j * nx + i] - bpx[j * nx + i])*(bx_err[j * nx + i]*bx_err[j * nx + i]) +
               4.0*(by[j * nx + i] - bpy[j * nx + i])*(by[j * nx + i] - bpy[j * nx + i])*(by_err[j * nx + i]*by_err[j * nx + i]);
                  count_mask++;                  count_mask++;
               }               }
           }           }
  
         *meanpotptr      = (sum1/(8.*PI)) / (count_mask);     /* Units are ergs per cubic centimeter */      /* Units of meanpotptr are ergs per centimeter */
         *meanpot_err_ptr = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0) / (count_mask*8.*PI); // error in the quantity (sum)/(count_mask)          *meanpotptr      = (sum1) / (count_mask*8.*PI) ;     /* Units are ergs per cubic centimeter */
       *meanpot_err_ptr = (sqrt(err)) / (count_mask*8.*PI); // error in the quantity (sum)/(count_mask)
  
         /* Units of sum are ergs/cm^3, units of factor are cm^2/pix^2; therefore, units of totpotptr are ergs per centimeter */         /* Units of sum are ergs/cm^3, units of factor are cm^2/pix^2; therefore, units of totpotptr are ergs per centimeter */
         *totpotptr       = (sum)/(8.*PI);         *totpotptr       = (sum)/(8.*PI);
         *totpot_err_ptr  = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0*(1/(8.*PI)));         *totpot_err_ptr  = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0*(1/(8.*PI)));
  
         printf("MEANPOT=%g\n",*meanpotptr);      //printf("MEANPOT=%g\n",*meanpotptr);
         printf("MEANPOT_err=%g\n",*meanpot_err_ptr);      //printf("MEANPOT_err=%g\n",*meanpot_err_ptr);
  
         printf("TOTPOT=%g\n",*totpotptr);      //printf("TOTPOT=%g\n",*totpotptr);
         printf("TOTPOT_err=%g\n",*totpot_err_ptr);      //printf("TOTPOT_err=%g\n",*totpot_err_ptr);
  
         return 0;         return 0;
 } }
Line 872  int computeFreeEnergy(float *bx_err, flo
Line 942  int computeFreeEnergy(float *bx_err, flo
 /*===========================================*/ /*===========================================*/
 /* Example function 14:  Mean 3D shear angle, area with shear greater than 45, mean horizontal shear angle, area with horizontal shear angle greater than 45 */ /* Example function 14:  Mean 3D shear angle, area with shear greater than 45, mean horizontal shear angle, area with horizontal shear angle greater than 45 */
  
 int computeShearAngle(float *bx_err, float *by_err, float *bh_err, float *bx, float *by, float *bz, float *bpx, float *bpy, float *bpz, int *dims,  int computeShearAngle(float *bx_err, float *by_err, float *bz_err, float *bx, float *by, float *bz, float *bpx, float *bpy, float *bpz, int *dims,
                       float *meanshear_angleptr, float *meanshear_angle_err_ptr, float *area_w_shear_gt_45ptr, int *mask, int *bitmask)                       float *meanshear_angleptr, float *meanshear_angle_err_ptr, float *area_w_shear_gt_45ptr, int *mask, int *bitmask)
   
   
 { {
         int nx = dims[0], ny = dims[1];      int nx = dims[0];
         int i, j;      int ny = dims[1];
       int i = 0;
       int j = 0;
       float count_mask = 0;
       float count = 0;
       double dotproduct = 0.0;
       double magnitude_potential = 0.0;
       double magnitude_vector = 0.0;
       double shear_angle = 0.0;
       double denominator = 0.0;
       double term1 = 0.0;
       double term2 = 0.0;
       double term3 = 0.0;
       double sumsum = 0.0;
       double err = 0.0;
       double part1 = 0.0;
       double part2 = 0.0;
       double part3 = 0.0;
       *area_w_shear_gt_45ptr = 0.0;
       *meanshear_angleptr = 0.0;
  
         if (nx <= 0 || ny <= 0) return 1;         if (nx <= 0 || ny <= 0) return 1;
  
         //*area_w_shear_gt_45ptr=0.0;  
         //*meanshear_angleptr=0.0;  
         float dotproduct, magnitude_potential, magnitude_vector, shear_angle,err=0.0, sum = 0.0, count=0.0, count_mask=0.0;  
   
         for (i = 0; i < nx; i++)         for (i = 0; i < nx; i++)
           {           {
             for (j = 0; j < ny; j++)             for (j = 0; j < ny; j++)
Line 895  int computeShearAngle(float *bx_err, flo
Line 982  int computeShearAngle(float *bx_err, flo
                  if isnan(bz[j * nx + i]) continue;                  if isnan(bz[j * nx + i]) continue;
                  if isnan(bx[j * nx + i]) continue;                  if isnan(bx[j * nx + i]) continue;
                  if isnan(by[j * nx + i]) continue;                  if isnan(by[j * nx + i]) continue;
                  /* For mean 3D shear angle, area with shear greater than 45*/              if isnan(bx_err[j * nx + i]) continue;
               if isnan(by_err[j * nx + i]) continue;
               if isnan(bz_err[j * nx + i]) continue;
   
               /* For mean 3D shear angle, percentage with shear greater than 45*/
                  dotproduct            = (bpx[j * nx + i])*(bx[j * nx + i]) + (bpy[j * nx + i])*(by[j * nx + i]) + (bpz[j * nx + i])*(bz[j * nx + i]);                  dotproduct            = (bpx[j * nx + i])*(bx[j * nx + i]) + (bpy[j * nx + i])*(by[j * nx + i]) + (bpz[j * nx + i])*(bz[j * nx + i]);
                  magnitude_potential   = sqrt( (bpx[j * nx + i]*bpx[j * nx + i]) + (bpy[j * nx + i]*bpy[j * nx + i]) + (bpz[j * nx + i]*bpz[j * nx + i]));                  magnitude_potential   = sqrt( (bpx[j * nx + i]*bpx[j * nx + i]) + (bpy[j * nx + i]*bpy[j * nx + i]) + (bpz[j * nx + i]*bpz[j * nx + i]));
                  magnitude_vector      = sqrt( (bx[j * nx + i]*bx[j * nx + i])   + (by[j * nx + i]*by[j * nx + i])   + (bz[j * nx + i]*bz[j * nx + i]) );                  magnitude_vector      = sqrt( (bx[j * nx + i]*bx[j * nx + i])   + (by[j * nx + i]*by[j * nx + i])   + (bz[j * nx + i]*bz[j * nx + i]) );
               //printf("dotproduct=%f\n",dotproduct);
               //printf("magnitude_potential=%f\n",magnitude_potential);
               //printf("magnitude_vector=%f\n",magnitude_vector);
   
                  shear_angle           = acos(dotproduct/(magnitude_potential*magnitude_vector))*(180./PI);                  shear_angle           = acos(dotproduct/(magnitude_potential*magnitude_vector))*(180./PI);
               sumsum                  += shear_angle;
               //printf("shear_angle=%f\n",shear_angle);
                  count ++;                  count ++;
                  sum += shear_angle ;  
                  err += -(1./(1.- sqrt(bx_err[j * nx + i]*bx_err[j * nx + i]+by_err[j * nx + i]*by_err[j * nx + i]+bh_err[j * nx + i]*bh_err[j * nx + i])));  
                  if (shear_angle > 45) count_mask ++;                  if (shear_angle > 45) count_mask ++;
   
               // For the error analysis
   
               term1 = bx[j * nx + i]*by[j * nx + i]*bpy[j * nx + i] - by[j * nx + i]*by[j * nx + i]*bpx[j * nx + i] + bz[j * nx + i]*bx[j * nx + i]*bpz[j * nx + i] - bz[j * nx + i]*bz[j * nx + i]*bpx[j * nx + i];
               term2 = bx[j * nx + i]*bx[j * nx + i]*bpy[j * nx + i] - bx[j * nx + i]*by[j * nx + i]*bpx[j * nx + i] + bx[j * nx + i]*bz[j * nx + i]*bpy[j * nx + i] - bz[j * nx + i]*by[j * nx + i]*bpz[j * nx + i];
               term3 = bx[j * nx + i]*bx[j * nx + i]*bpz[j * nx + i] - bx[j * nx + i]*bz[j * nx + i]*bpx[j * nx + i] + by[j * nx + i]*by[j * nx + i]*bpz[j * nx + i] - by[j * nx + i]*bz[j * nx + i]*bpy[j * nx + i];
   
               part1 = bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] + bz[j * nx + i]*bz[j * nx + i];
               part2 = bpx[j * nx + i]*bpx[j * nx + i] + bpy[j * nx + i]*bpy[j * nx + i] + bpz[j * nx + i]*bpz[j * nx + i];
               part3 = bx[j * nx + i]*bpx[j * nx + i] + by[j * nx + i]*bpy[j * nx + i] + bz[j * nx + i]*bpz[j * nx + i];
   
               // denominator is squared
               denominator = part1*part1*part1*part2*(1.0-((part3*part3)/(part1*part2)));
   
               err = (term1*term1*bx_err[j * nx + i]*bx_err[j * nx + i])/(denominator) +
               (term1*term1*bx_err[j * nx + i]*bx_err[j * nx + i])/(denominator) +
               (term1*term1*bx_err[j * nx + i]*bx_err[j * nx + i])/(denominator) ;
   
               }               }
           }           }
   
         /* For mean 3D shear angle, area with shear greater than 45*/         /* For mean 3D shear angle, area with shear greater than 45*/
         *meanshear_angleptr = (sum)/(count);                 /* Units are degrees */      *meanshear_angleptr = (sumsum)/(count);                 /* Units are degrees */
         *meanshear_angle_err_ptr = (sqrt(err*err))/(count);  // error in the quantity (sum)/(count_mask)      *meanshear_angle_err_ptr = (sqrt(err)/count_mask)*(180./PI);
         *area_w_shear_gt_45ptr   = (count_mask/(count))*(100.);/* The area here is a fractional area -- the % of the total area */  
       /* The area here is a fractional area -- the % of the total area. This has no error associated with it. */
       *area_w_shear_gt_45ptr   = (count_mask/(count))*(100.0);
   
       //printf("MEANSHR=%f\n",*meanshear_angleptr);
       //printf("MEANSHR_err=%f\n",*meanshear_angle_err_ptr);
       //printf("SHRGT45=%f\n",*area_w_shear_gt_45ptr);
   
           return 0;
   }
   
   /*===========================================*/
   /* Example function 15: R parameter as defined in Schrijver, 2007 */
   //
   // Note that there is a restriction on the function fsample()
   // If the following occurs:
   //      nx_out > floor((ny_in-1)/scale + 1)
   //      ny_out > floor((ny_in-1)/scale + 1),
   // where n*_out are the dimensions of the output array and n*_in
   // are the dimensions of the input array, fsample() will usually result
   // in a segfault (though not always, depending on how the segfault was accessed.)
   
   int computeR(float *bz_err, float *los, int *dims, float *Rparam, float cdelt1,
                float *rim, float *p1p0, float *p1n0, float *p1p, float *p1n, float *p1,
                float *pmap, int nx1, int ny1,
                int scale, float *p1pad, int nxp, int nyp, float *pmapn)
   
   {
       int nx = dims[0];
       int ny = dims[1];
       int i = 0;
       int j = 0;
       int index, index1;
       double sum = 0.0;
       double err = 0.0;
       *Rparam = 0.0;
       struct fresize_struct fresboxcar, fresgauss;
       struct fint_struct fints;
       float sigma = 10.0/2.3548;
   
       // set up convolution kernels
       init_fresize_boxcar(&fresboxcar,1,1);
       init_fresize_gaussian(&fresgauss,sigma,20,1);
   
       // =============== [STEP 1] ===============
       // bin the line-of-sight magnetogram down by a factor of scale
       fsample(los, rim, nx, ny, nx, nx1, ny1, nx1, scale, 0, 0, 0.0);
   
       // =============== [STEP 2] ===============
       // identify positive and negative pixels greater than +/- 150 gauss
       // and label those pixels with a 1.0 in arrays p1p0 and p1n0
       for (i = 0; i < nx1; i++)
       {
           for (j = 0; j < ny1; j++)
           {
               index = j * nx1 + i;
               if (rim[index] > 150)
                   p1p0[index]=1.0;
               else
                   p1p0[index]=0.0;
               if (rim[index] < -150)
                   p1n0[index]=1.0;
               else
                   p1n0[index]=0.0;
           }
       }
   
       // =============== [STEP 3] ===============
       // smooth each of the negative and positive pixel bitmaps
       fresize(&fresboxcar, p1p0, p1p, nx1, ny1, nx1, nx1, ny1, nx1, 0, 0, 0.0);
       fresize(&fresboxcar, p1n0, p1n, nx1, ny1, nx1, nx1, ny1, nx1, 0, 0, 0.0);
   
       // =============== [STEP 4] ===============
       // find the pixels for which p1p and p1n are both equal to 1.
       // this defines the polarity inversion line
       for (i = 0; i < nx1; i++)
       {
           for (j = 0; j < ny1; j++)
           {
               index = j * nx1 + i;
               if ((p1p[index] > 0.0) && (p1n[index] > 0.0))
                   p1[index]=1.0;
               else
                   p1[index]=0.0;
           }
       }
   
       // pad p1 with zeroes so that the gaussian colvolution in step 5
       // does not cut off data within hwidth of the edge
   
       // step i: zero p1pad
       for (i = 0; i < nxp; i++)
       {
           for (j = 0; j < nyp; j++)
           {
               index = j * nxp + i;
               p1pad[index]=0.0;
           }
       }
   
       // step ii: place p1 at the center of p1pad
       for (i = 0; i < nx1; i++)
       {
          for (j = 0; j < ny1; j++)
          {
               index  = j * nx1 + i;
               index1 = (j+20) * nxp + (i+20);
               p1pad[index1]=p1[index];
           }
       }
   
       // =============== [STEP 5] ===============
       // convolve the polarity inversion line map with a gaussian
       // to identify the region near the plarity inversion line
       // the resultant array is called pmap
       fresize(&fresgauss, p1pad, pmap, nxp, nyp, nxp, nxp, nyp, nxp, 0, 0, 0.0);
   
   
      // select out the nx1 x ny1 non-padded array  within pmap
       for (i = 0; i < nx1; i++)
       {
          for (j = 0; j < ny1; j++)
          {
               index  = j * nx1 + i;
               index1 = (j+20) * nxp + (i+20);
               pmapn[index]=pmap[index1];
           }
       }
   
       // =============== [STEP 6] ===============
       // the R parameter is calculated
       for (i = 0; i < nx1; i++)
       {
           for (j = 0; j < ny1; j++)
           {
               index = j * nx1 + i;
               if isnan(pmapn[index]) continue;
               if isnan(rim[index]) continue;
               sum += pmapn[index]*abs(rim[index]);
           }
       }
   
       if (sum < 1.0)
           *Rparam = 0.0;
       else
           *Rparam = log10(sum);
   
       //printf("R_VALUE=%f\n",*Rparam);
  
         printf("MEANSHR=%f\n",*meanshear_angleptr);      free_fresize(&fresboxcar);
         printf("MEANSHR_err=%f\n",*meanshear_angle_err_ptr);      free_fresize(&fresgauss);
  
         return 0;         return 0;
   
 } }
  
   /*===========================================*/
   /* Example function 16: Lorentz force as defined in Fisher, 2012 */
   //
   // This calculation is adapted from Xudong's code
   // at /proj/cgem/lorentz/apps/lorentz.c
   
   int computeLorentz(float *bx,  float *by, float *bz, float *fx, float *fy, float *fz, int *dims,
                      float *totfx_ptr, float *totfy_ptr, float *totfz_ptr, float *totbsq_ptr,
                      float *epsx_ptr, float *epsy_ptr, float *epsz_ptr, int *mask, int *bitmask,
                      float cdelt1, double rsun_ref, double rsun_obs)
   
   {
   
       int nx = dims[0];
       int ny = dims[1];
       int nxny = nx*ny;
       int j = 0;
       int index;
       double totfx = 0, totfy = 0, totfz = 0;
       double bsq = 0, totbsq = 0;
       double epsx = 0, epsy = 0, epsz = 0;
       double area = cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0;
       double k_h = -1.0 * area / (4. * PI) / 1.0e20;
       double k_z = area / (8. * PI) / 1.0e20;
   
       if (nx <= 0 || ny <= 0) return 1;
   
       for (int i = 0; i < nxny; i++)
       {
          if ( mask[i] < 70 || bitmask[i] < 30 ) continue;
          if isnan(bx[i]) continue;
          if isnan(by[i]) continue;
          if isnan(bz[i]) continue;
          fx[i]  = bx[i] * bz[i] * k_h;
          fy[i]  = by[i] * bz[i] * k_h;
          fz[i]  = (bx[i] * bx[i] + by[i] * by[i] - bz[i] * bz[i]) * k_z;
          bsq    = bx[i] * bx[i] + by[i] * by[i] + bz[i] * bz[i];
          totfx  += fx[i]; totfy += fy[i]; totfz += fz[i];
          totbsq += bsq;
       }
   
       *totfx_ptr  = totfx;
       *totfy_ptr  = totfy;
       *totfz_ptr  = totfz;
       *totbsq_ptr = totbsq;
       *epsx_ptr   = (totfx / k_h) / totbsq;
       *epsy_ptr   = (totfy / k_h) / totbsq;
       *epsz_ptr   = (totfz / k_z) / totbsq;
   
       //printf("TOTBSQ=%f\n",*totbsq_ptr);
   
       return 0;
   
   }
  
 /*==================KEIJI'S CODE =========================*/ /*==================KEIJI'S CODE =========================*/
  
Line 1034  void greenpot(float *bx, float *by, floa
Line 1349  void greenpot(float *bx, float *by, floa
  
  
 /*===========END OF KEIJI'S CODE =========================*/ /*===========END OF KEIJI'S CODE =========================*/
   
   char *sw_functions_version() // Returns CVS version of sw_functions.c
   {
       return strdup("$Id");
   }
   
 /* ---------------- end of this file ----------------*/ /* ---------------- end of this file ----------------*/


Legend:
Removed from v.1.13  
changed lines
  Added in v.1.37

Karen Tian
Powered by
ViewCVS 0.9.4