Return to sw_functions.c CVS log Up to [Development] / JSOC / proj / sharp / apps

Diff for /JSOC/proj/sharp/apps/sw_functions.c between version 1.3 and 1.15

version 1.3, 2012/10/23 18:42:56 version 1.15, 2013/07/08 23:02:22
 Line 1
 Line 1
/*=========================================== /*===========================================

The following 13 functions calculate the following spaceweather indices:     The following 14 functions calculate the following spaceweather indices:

USFLUX Total unsigned flux in Maxwells     USFLUX Total unsigned flux in Maxwells
MEANGAM Mean inclination angle, gamma, in degrees     MEANGAM Mean inclination angle, gamma, in degrees
 Line 42
 Line 42

===========================================*/ ===========================================*/
#include <math.h> #include <math.h>
#include <mkl.h>

#define PI              (M_PI) #define PI              (M_PI)
#define MUNAUGHT (0.0000012566370614) /* magnetic constant */ #define MUNAUGHT (0.0000012566370614) /* magnetic constant */
 Line 66
 Line 67
//  5: pixels for which the radial acute disambiguation solution was chosen //  5: pixels for which the radial acute disambiguation solution was chosen
//  7: pixels for which the radial acute and NRWA disambiguation agree //  7: pixels for which the radial acute and NRWA disambiguation agree

int computeAbsFlux(float *bz, int *dims, float *absFlux,  int computeAbsFlux(float *bz_err, float *bz, int *dims, float *absFlux,
float cdelt1, double rsun_ref, double rsun_obs)                     int *bitmask, float cdelt1, double rsun_ref, double rsun_obs)

{ {

int nx = dims[0], ny = dims[1];      int nx = dims[0];
int i, j, count_mask=0;      int ny = dims[1];
int i = 0;
int j = 0;
double sum=0.0;     double sum=0.0;
double err = 0.0;
if (nx <= 0 || ny <= 0) return 1;

*absFlux = 0.0;     *absFlux = 0.0;
*mean_vf_ptr =0.0;     *mean_vf_ptr =0.0;

for (j = 0; j < ny; j++)
{      if (nx <= 0 || ny <= 0) return 1;

for (i = 0; i < nx; i++)                 for (i = 0; i < nx; i++)
{                 {
for (j = 0; j < ny; j++)
{
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;                   if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;
if isnan(bz[j * nx + i]) continue;
sum += (fabs(bz[j * nx + i]));                   sum += (fabs(bz[j * nx + i]));
//printf("i,j,bz[j * nx + i]=%d,%d,%f\n",i,j,bz[j * nx + i]);
err += bz_err[j * nx + i]*bz_err[j * nx + i];
}                 }
}         }

printf("cdelt1=%f,rsun_ref=%f,rsun_obs=%f\n",cdelt1,rsun_ref,rsun_obs);
*mean_vf_ptr = sum*cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0;      *mean_vf_ptr = sum*cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0;
*mean_vf_err_ptr = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0); // error in the unsigned flux
printf("cdelt1=%f\n",cdelt1);
printf("rsun_obs=%f\n",rsun_obs);
printf("rsun_ref=%f\n",rsun_ref);
printf("USFLUX=%g\n",*mean_vf_ptr);
printf("sum=%f\n",sum);
printf("USFLUX_err=%g\n",*mean_vf_err_ptr);
return 0;      return 0;
} }

/*===========================================*/ /*===========================================*/
/* Example function 2: Calculate Bh in units of Gauss */  /* Example function 2: Calculate Bh, the horizontal field, in units of Gauss */
// Native units of Bh are Gauss // Native units of Bh are Gauss

int computeBh(float *bx, float *by, float *bz, float *bh, int *dims,  int computeBh(float *bx_err, float *by_err, float *bh_err, float *bx, float *by, float *bz, float *bh, int *dims,

{ {

int nx = dims[0], ny = dims[1];      int nx = dims[0];
int i, j, count_mask=0;      int ny = dims[1];
float sum=0.0;      int i = 0;
int j = 0;
double sum = 0.0;
*mean_hf_ptr =0.0;     *mean_hf_ptr =0.0;

if (nx <= 0 || ny <= 0) return 1;     if (nx <= 0 || ny <= 0) return 1;

for (j = 0; j < ny; j++)
{
for (i = 0; i < nx; i++)             for (i = 0; i < nx; i++)
{               {
for (j = 0; j < ny; j++)
{
if isnan(bx[j * nx + i]) continue;
if isnan(by[j * nx + i]) continue;
bh[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] );                 bh[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] );
sum += bh[j * nx + i];                 sum += bh[j * nx + i];
bh_err[j * nx + i]=sqrt( bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i] + by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i])/ bh[j * nx + i];
}               }
}           }

*mean_hf_ptr = sum/(count_mask); // would be divided by nx*ny if shape of count_mask = shape of magnetogram     *mean_hf_ptr = sum/(count_mask); // would be divided by nx*ny if shape of count_mask = shape of magnetogram
printf("*mean_hf_ptr=%f\n",*mean_hf_ptr);
return 0;     return 0;
} }

/*===========================================*/ /*===========================================*/
/* Example function 3: Calculate Gamma in units of degrees */ /* Example function 3: Calculate Gamma in units of degrees */
// Native units of atan(x) are in radians; to convert from radians to degrees, multiply by (180./PI) // Native units of atan(x) are in radians; to convert from radians to degrees, multiply by (180./PI)
// Redo calculation in radians for error analysis (since derivatives are only true in units of radians).

int computeGamma(float *bz_err, float *bh_err, float *bx, float *by, float *bz, float *bh, int *dims,
int computeGamma(float *bx, float *by, float *bz, float *bh, int *dims,                   float *mean_gamma_ptr, float *mean_gamma_err_ptr, int *mask, int *bitmask)
{ {
int nx = dims[0], ny = dims[1];      int nx = dims[0];
int i, j, count_mask=0;      int ny = dims[1];
int i = 0;
int j = 0;
double sum = 0.0;
double err = 0.0;
*mean_gamma_ptr = 0.0;

if (nx <= 0 || ny <= 0) return 1;     if (nx <= 0 || ny <= 0) return 1;

*mean_gamma_ptr=0.0;
float sum=0.0;
int count=0;

for (i = 0; i < nx; i++)         for (i = 0; i < nx; i++)
{           {
for (j = 0; j < ny; j++)             for (j = 0; j < ny; j++)
 Line 152  int computeGamma(float *bx, float *by, f
 Line 175  int computeGamma(float *bx, float *by, f
if (bh[j * nx + i] > 100)                 if (bh[j * nx + i] > 100)
{                   {
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;                     if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;
sum += (atan (fabs( bz[j * nx + i] / bh[j * nx + i] ))* (180./PI));                      if isnan(bz[j * nx + i]) continue;
if isnan(bz_err[j * nx + i]) continue;
if isnan(bh_err[j * nx + i]) continue;
if (bz[j * nx + i] == 0) continue;
sum += (atan(fabs(bz[j * nx + i]/bh[j * nx + i] )))*(180./PI);
err += (( sqrt ( ((bz_err[j * nx + i]*bz_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i])) + ((bh_err[j * nx + i]*bh_err[j * nx + i])/(bh[j * nx + i]*bh[j * nx + i])))  * fabs(bz[j * nx + i]/bh[j * nx + i]) ) / (1 + (bz[j * nx + i]/bh[j * nx + i])*(bz[j * nx + i]/bh[j * nx + i]))) *(180./PI);
}                   }
}               }
}           }

printf("MEANGAM=%f\n",*mean_gamma_ptr);
printf("MEANGAM_err=%f\n",*mean_gamma_err_ptr);
return 0;      return 0;
} }

 Line 167  int computeGamma(float *bx, float *by, f
 Line 197  int computeGamma(float *bx, float *by, f
/* Example function 4: Calculate B_Total*/ /* Example function 4: Calculate B_Total*/
// Native units of B_Total are in gauss // Native units of B_Total are in gauss

int computeB_total(float *bx, float *by, float *bz, float *bt, int *dims, int *mask, int *bitmask)  int computeB_total(float *bx_err, float *by_err, float *bz_err, float *bt_err, float *bx, float *by, float *bz, float *bt, int *dims, int *mask, int *bitmask)
{ {

int nx = dims[0], ny = dims[1];      int nx = dims[0];
int i, j, count_mask=0;      int ny = dims[1];
int i = 0;
int j = 0;

if (nx <= 0 || ny <= 0) return 1;     if (nx <= 0 || ny <= 0) return 1;

 Line 179  int computeB_total(float *bx, float *by,
 Line 212  int computeB_total(float *bx, float *by,
{           {
for (j = 0; j < ny; j++)             for (j = 0; j < ny; j++)
{               {
if isnan(bx[j * nx + i]) continue;
if isnan(by[j * nx + i]) continue;
if isnan(bz[j * nx + i]) continue;
bt[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]);                 bt[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]);
bt_err[j * nx + i]=sqrt(bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i] + by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]*bz_err[j * nx + i]*bz_err[j * nx + i] )/bt[j * nx + i];
}               }
}           }
return 0;      return 0;
 Line 188  int computeB_total(float *bx, float *by,
 Line 225  int computeB_total(float *bx, float *by,
/*===========================================*/ /*===========================================*/
/* Example function 5:  Derivative of B_Total SQRT( (dBt/dx)^2 + (dBt/dy)^2 ) */ /* Example function 5:  Derivative of B_Total SQRT( (dBt/dx)^2 + (dBt/dy)^2 ) */

int computeBtotalderivative(float *bt, int *dims, float *mean_derivative_btotal_ptr, int *mask, int *bitmask, float *derx_bt, float *dery_bt)  int computeBtotalderivative(float *bt, int *dims, float *mean_derivative_btotal_ptr, int *mask, int *bitmask, float *derx_bt, float *dery_bt, float *bt_err, float *mean_derivative_btotal_err_ptr)
{ {

int nx = dims[0], ny = dims[1];      int nx = dims[0];
int i, j, count_mask=0;      int ny = dims[1];
int i = 0;
if (nx <= 0 || ny <= 0) return 1;      int j = 0;
double sum = 0.0;
double err = 0.0;
*mean_derivative_btotal_ptr = 0.0;     *mean_derivative_btotal_ptr = 0.0;
float sum = 0.0;

if (nx <= 0 || ny <= 0) return 1;

/* brute force method of calculating the derivative (no consideration for edges) */         /* brute force method of calculating the derivative (no consideration for edges) */
for (i = 1; i <= nx-2; i++)         for (i = 1; i <= nx-2; i++)
 Line 245  int computeBtotalderivative(float *bt, i
 Line 284  int computeBtotalderivative(float *bt, i
}           }

/* Just some print statements
for (i = 0; i < nx; i++)
{
for (j = 0; j < ny; j++)
{
printf("j=%d\n",j);
printf("i=%d\n",i);
printf("dery_bt[j*nx+i]=%f\n",dery_bt[j*nx+i]);
printf("derx_bt[j*nx+i]=%f\n",derx_bt[j*nx+i]);
printf("bt[j*nx+i]=%f\n",bt[j*nx+i]);
}
}
*/

for (i = 0; i <= nx-1; i++)         for (i = 0; i <= nx-1; i++)
{           {
for (j = 0; j <= ny-1; j++)             for (j = 0; j <= ny-1; j++)
{             {
// if ( (derx_bt[j * nx + i]-dery_bt[j * nx + i]) == 0) continue;
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;                if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;
if isnan(derx_bt[j * nx + i]) continue;
if isnan(dery_bt[j * nx + i]) continue;
sum += sqrt( derx_bt[j * nx + i]*derx_bt[j * nx + i]  + dery_bt[j * nx + i]*dery_bt[j * nx + i]  ); /* Units of Gauss */                sum += sqrt( derx_bt[j * nx + i]*derx_bt[j * nx + i]  + dery_bt[j * nx + i]*dery_bt[j * nx + i]  ); /* Units of Gauss */
err += (2.0)*bt_err[j * nx + i]*bt_err[j * nx + i];
}             }
}           }

*mean_derivative_btotal_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram         *mean_derivative_btotal_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram
printf("MEANGBT=%f\n",*mean_derivative_btotal_ptr);
printf("MEANGBT_err=%f\n",*mean_derivative_btotal_err_ptr);
return 0;         return 0;
} }

 Line 279  int computeBtotalderivative(float *bt, i
 Line 308  int computeBtotalderivative(float *bt, i
/*===========================================*/ /*===========================================*/
/* Example function 6:  Derivative of Bh SQRT( (dBh/dx)^2 + (dBh/dy)^2 ) */ /* Example function 6:  Derivative of Bh SQRT( (dBh/dx)^2 + (dBh/dy)^2 ) */

int computeBhderivative(float *bh, int *dims, float *mean_derivative_bh_ptr, int *mask, int *bitmask, float *derx_bh, float *dery_bh)  int computeBhderivative(float *bh, float *bh_err, int *dims, float *mean_derivative_bh_ptr, float *mean_derivative_bh_err_ptr, int *mask, int *bitmask, float *derx_bh, float *dery_bh)
{ {

int nx = dims[0], ny = dims[1];       int nx = dims[0];
int i, j, count_mask=0;       int ny = dims[1];
int i = 0;
int j = 0;
double sum= 0.0;
double err =0.0;
*mean_derivative_bh_ptr = 0.0;

if (nx <= 0 || ny <= 0) return 1;         if (nx <= 0 || ny <= 0) return 1;

*mean_derivative_bh_ptr = 0.0;
float sum = 0.0;

/* brute force method of calculating the derivative (no consideration for edges) */         /* brute force method of calculating the derivative (no consideration for edges) */
for (i = 1; i <= nx-2; i++)         for (i = 1; i <= nx-2; i++)
{           {
 Line 335  int computeBhderivative(float *bh, int *
 Line 367  int computeBhderivative(float *bh, int *
}           }

/*Just some print statements
for (i = 0; i < nx; i++)
{
for (j = 0; j < ny; j++)
{
printf("j=%d\n",j);
printf("i=%d\n",i);
printf("dery_bh[j*nx+i]=%f\n",dery_bh[j*nx+i]);
printf("derx_bh[j*nx+i]=%f\n",derx_bh[j*nx+i]);
printf("bh[j*nx+i]=%f\n",bh[j*nx+i]);
}
}
*/

for (i = 0; i <= nx-1; i++)         for (i = 0; i <= nx-1; i++)
{           {
for (j = 0; j <= ny-1; j++)             for (j = 0; j <= ny-1; j++)
{             {
// if ( (derx_bh[j * nx + i]-dery_bh[j * nx + i]) == 0) continue;
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;                if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;
if isnan(derx_bh[j * nx + i]) continue;
if isnan(dery_bh[j * nx + i]) continue;
sum += sqrt( derx_bh[j * nx + i]*derx_bh[j * nx + i]  + dery_bh[j * nx + i]*dery_bh[j * nx + i]  ); /* Units of Gauss */                sum += sqrt( derx_bh[j * nx + i]*derx_bh[j * nx + i]  + dery_bh[j * nx + i]*dery_bh[j * nx + i]  ); /* Units of Gauss */
err += (2.0)*bh_err[j * nx + i]*bh_err[j * nx + i];
}             }
}           }

*mean_derivative_bh_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram         *mean_derivative_bh_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram
printf("MEANGBH=%f\n",*mean_derivative_bh_ptr);
printf("MEANGBH_err=%f\n",*mean_derivative_bh_err_ptr);

return 0;         return 0;
} }

/*===========================================*/ /*===========================================*/
/* Example function 7:  Derivative of B_vertical SQRT( (dBz/dx)^2 + (dBz/dy)^2 ) */ /* Example function 7:  Derivative of B_vertical SQRT( (dBz/dx)^2 + (dBz/dy)^2 ) */

int computeBzderivative(float *bz, int *dims, float *mean_derivative_bz_ptr, int *mask, int *bitmask, float *derx_bz, float *dery_bz)  int computeBzderivative(float *bz, float *bz_err, int *dims, float *mean_derivative_bz_ptr, float *mean_derivative_bz_err_ptr, int *mask, int *bitmask, float *derx_bz, float *dery_bz)
{ {

int nx = dims[0], ny = dims[1];          int nx = dims[0];
int i, j, count_mask=0;          int ny = dims[1];
int i = 0;
int j = 0;
double sum = 0.0;
double err = 0.0;
*mean_derivative_bz_ptr = 0.0;

if (nx <= 0 || ny <= 0) return 1;         if (nx <= 0 || ny <= 0) return 1;

*mean_derivative_bz_ptr = 0.0;
float sum = 0.0;

/* brute force method of calculating the derivative (no consideration for edges) */         /* brute force method of calculating the derivative (no consideration for edges) */
for (i = 1; i <= nx-2; i++)         for (i = 1; i <= nx-2; i++)
{           {
for (j = 0; j <= ny-1; j++)             for (j = 0; j <= ny-1; j++)
{               {
if isnan(bz[j * nx + i]) continue;
derx_bz[j * nx + i] = (bz[j * nx + i+1] - bz[j * nx + i-1])*0.5;                 derx_bz[j * nx + i] = (bz[j * nx + i+1] - bz[j * nx + i-1])*0.5;
}               }
}           }
 Line 392  int computeBzderivative(float *bz, int *
 Line 420  int computeBzderivative(float *bz, int *
{           {
for (j = 1; j <= ny-2; j++)             for (j = 1; j <= ny-2; j++)
{               {
if isnan(bz[j * nx + i]) continue;
dery_bz[j * nx + i] = (bz[(j+1) * nx + i] - bz[(j-1) * nx + i])*0.5;                 dery_bz[j * nx + i] = (bz[(j+1) * nx + i] - bz[(j-1) * nx + i])*0.5;
}               }
}           }
 Line 401  int computeBzderivative(float *bz, int *
 Line 430  int computeBzderivative(float *bz, int *
i=0;         i=0;
for (j = 0; j <= ny-1; j++)         for (j = 0; j <= ny-1; j++)
{           {
if isnan(bz[j * nx + i]) continue;
derx_bz[j * nx + i] = ( (-3*bz[j * nx + i]) + (4*bz[j * nx + (i+1)]) - (bz[j * nx + (i+2)]) )*0.5;              derx_bz[j * nx + i] = ( (-3*bz[j * nx + i]) + (4*bz[j * nx + (i+1)]) - (bz[j * nx + (i+2)]) )*0.5;
}           }

i=nx-1;         i=nx-1;
for (j = 0; j <= ny-1; j++)         for (j = 0; j <= ny-1; j++)
{           {
if isnan(bz[j * nx + i]) continue;
derx_bz[j * nx + i] = ( (3*bz[j * nx + i]) + (-4*bz[j * nx + (i-1)]) - (-bz[j * nx + (i-2)]) )*0.5;              derx_bz[j * nx + i] = ( (3*bz[j * nx + i]) + (-4*bz[j * nx + (i-1)]) - (-bz[j * nx + (i-2)]) )*0.5;
}           }

j=0;         j=0;
for (i = 0; i <= nx-1; i++)         for (i = 0; i <= nx-1; i++)
{           {
if isnan(bz[j * nx + i]) continue;
dery_bz[j * nx + i] = ( (-3*bz[j*nx + i]) + (4*bz[(j+1) * nx + i]) - (bz[(j+2) * nx + i]) )*0.5;              dery_bz[j * nx + i] = ( (-3*bz[j*nx + i]) + (4*bz[(j+1) * nx + i]) - (bz[(j+2) * nx + i]) )*0.5;
}           }

j=ny-1;         j=ny-1;
for (i = 0; i <= nx-1; i++)         for (i = 0; i <= nx-1; i++)
{           {
if isnan(bz[j * nx + i]) continue;
dery_bz[j * nx + i] = ( (3*bz[j * nx + i]) + (-4*bz[(j-1) * nx + i]) - (-bz[(j-2) * nx + i]) )*0.5;              dery_bz[j * nx + i] = ( (3*bz[j * nx + i]) + (-4*bz[(j-1) * nx + i]) - (-bz[(j-2) * nx + i]) )*0.5;
}           }

/*Just some print statements
for (i = 0; i < nx; i++)
{
for (j = 0; j < ny; j++)
{
printf("j=%d\n",j);
printf("i=%d\n",i);
printf("dery_bz[j*nx+i]=%f\n",dery_bz[j*nx+i]);
printf("derx_bz[j*nx+i]=%f\n",derx_bz[j*nx+i]);
printf("bz[j*nx+i]=%f\n",bz[j*nx+i]);
}
}
*/

for (i = 0; i <= nx-1; i++)         for (i = 0; i <= nx-1; i++)
{           {
for (j = 0; j <= ny-1; j++)             for (j = 0; j <= ny-1; j++)
{             {
// if ( (derx_bz[j * nx + i]-dery_bz[j * nx + i]) == 0) continue;                // if ( (derx_bz[j * nx + i]-dery_bz[j * nx + i]) == 0) continue;
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;                if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;
if isnan(bz[j * nx + i]) continue;
//if isnan(bz_err[j * nx + i]) continue;
if isnan(derx_bz[j * nx + i]) continue;
if isnan(dery_bz[j * nx + i]) continue;
sum += sqrt( derx_bz[j * nx + i]*derx_bz[j * nx + i]  + dery_bz[j * nx + i]*dery_bz[j * nx + i]  ); /* Units of Gauss */                sum += sqrt( derx_bz[j * nx + i]*derx_bz[j * nx + i]  + dery_bz[j * nx + i]*dery_bz[j * nx + i]  ); /* Units of Gauss */
err += 2.0*bz_err[j * nx + i]*bz_err[j * nx + i];
}             }
}           }

*mean_derivative_bz_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram         *mean_derivative_bz_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram
printf("MEANGBZ=%f\n",*mean_derivative_bz_ptr);
printf("MEANGBZ_err=%f\n",*mean_derivative_bz_err_ptr);

return 0;         return 0;
} }

/*===========================================*/ /*===========================================*/

/* Example function 8:  Current Jz = (dBy/dx) - (dBx/dy) */ /* Example function 8:  Current Jz = (dBy/dx) - (dBx/dy) */

//  In discretized space like data pixels, //  In discretized space like data pixels,
 Line 470  int computeBzderivative(float *bz, int *
 Line 497  int computeBzderivative(float *bz, int *
// //
//  To change units from Gauss/pixel to mA/m^2 (the units for Jz in Leka and Barnes, 2003), //  To change units from Gauss/pixel to mA/m^2 (the units for Jz in Leka and Barnes, 2003),
//  one must perform the following unit conversions: //  one must perform the following unit conversions:
//  (Gauss/pix)(pix/arcsec)(arcsec/meter)(Newton/Gauss*Ampere*meter)(Ampere^2/Newton)(milliAmpere/Ampere), or  //  (Gauss)(1/arcsec)(arcsec/meter)(Newton/Gauss*Ampere*meter)(Ampere^2/Newton)(milliAmpere/Ampere), or
//  (Gauss/pix)(1/CDELT1)(RSUN_OBS/RSUN_REF)(1 T / 10^4 Gauss)(1 / 4*PI*10^-7)( 10^3 milliAmpere/Ampere),  //  (Gauss)(1/CDELT1)(RSUN_OBS/RSUN_REF)(1 T / 10^4 Gauss)(1 / 4*PI*10^-7)( 10^3 milliAmpere/Ampere), or
//  (Gauss)(1/CDELT1)(RSUN_OBS/RSUN_REF)(0.00010)(1/MUNAUGHT)(1000.),
//  where a Tesla is represented as a Newton/Ampere*meter. //  where a Tesla is represented as a Newton/Ampere*meter.
//
//  As an order of magnitude estimate, we can assign 0.5 to CDELT1 and 722500m/arcsec to (RSUN_REF/RSUN_OBS). //  As an order of magnitude estimate, we can assign 0.5 to CDELT1 and 722500m/arcsec to (RSUN_REF/RSUN_OBS).
//  In that case, we would have the following: //  In that case, we would have the following:
//  (Gauss/pix)(1/0.5)(1/722500)(10^-4)(4*PI*10^7)(10^3), or //  (Gauss/pix)(1/0.5)(1/722500)(10^-4)(4*PI*10^7)(10^3), or
//  jz * (35.0) //  jz * (35.0)
// //
//  The units of total unsigned vertical current (us_i) are simply in A. In this case, we would have the following: //  The units of total unsigned vertical current (us_i) are simply in A. In this case, we would have the following:
//  (Gauss/pix)(1/CDELT1)(RSUN_OBS/RSUN_REF)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS)(RSUN_REF/RSUN_OBS)(1000.)  //  (Gauss/pix)(1/CDELT1)(RSUN_OBS/RSUN_REF)(0.00010)(1/MUNAUGHT)(CDELT1)(CDELT1)(RSUN_REF/RSUN_OBS)(RSUN_REF/RSUN_OBS)
//  =(Gauss/pix)(1/CDELT1)(0.0010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS)(1000.)  //  = (Gauss/pix)(0.00010)(1/MUNAUGHT)(CDELT1)(RSUN_REF/RSUN_OBS)
//  =(Gauss/pix)(1/0.5)(10^-4)(4*PI*10^7)(722500)(1000.)
//  =(Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS)(1000.)

int computeJz(float *bx, float *by, int *dims, float *jz,
float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery)

// Comment out random number generator, which can only run on solar3
//int computeJz(float *bx_err, float *by_err, float *bx, float *by, int *dims, float *jz, float *jz_err, float *jz_err_squared,
//            int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery, float *noisebx,
//              float *noiseby, float *noisebz)

int computeJz(float *bx_err, float *by_err, float *bx, float *by, int *dims, float *jz, float *jz_err, float *jz_err_squared,
int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery)

{

int nx = dims[0], ny = dims[1];  {
int i, j, count_mask=0;          int nx = dims[0];
int ny = dims[1];
int i = 0;
int j = 0;

if (nx <= 0 || ny <= 0) return 1;         if (nx <= 0 || ny <= 0) return 1;

*mean_jz_ptr = 0.0;          /* Calculate the derivative*/
float curl=0.0, us_i=0.0,test_perimeter=0.0,mean_curl=0.0;

/* brute force method of calculating the derivative (no consideration for edges) */         /* brute force method of calculating the derivative (no consideration for edges) */

for (i = 1; i <= nx-2; i++)         for (i = 1; i <= nx-2; i++)
{           {
for (j = 0; j <= ny-1; j++)             for (j = 0; j <= ny-1; j++)
{               {
if isnan(by[j * nx + i]) continue;
derx[j * nx + i] = (by[j * nx + i+1] - by[j * nx + i-1])*0.5;                  derx[j * nx + i] = (by[j * nx + i+1] - by[j * nx + i-1])*0.5;
}               }
}           }

/* brute force method of calculating the derivative (no consideration for edges) */
for (i = 0; i <= nx-1; i++)         for (i = 0; i <= nx-1; i++)
{           {
for (j = 1; j <= ny-2; j++)             for (j = 1; j <= ny-2; j++)
{               {
if isnan(bx[j * nx + i]) continue;
dery[j * nx + i] = (bx[(j+1) * nx + i] - bx[(j-1) * nx + i])*0.5;                  dery[j * nx + i] = (bx[(j+1) * nx + i] - bx[(j-1) * nx + i])*0.5;
}               }
}           }

// consider the edges
/* consider the edges */
i=0;         i=0;
for (j = 0; j <= ny-1; j++)         for (j = 0; j <= ny-1; j++)
{           {
if isnan(by[j * nx + i]) continue;
derx[j * nx + i] = ( (-3*by[j * nx + i]) + (4*by[j * nx + (i+1)]) - (by[j * nx + (i+2)]) )*0.5;              derx[j * nx + i] = ( (-3*by[j * nx + i]) + (4*by[j * nx + (i+1)]) - (by[j * nx + (i+2)]) )*0.5;
}           }

i=nx-1;         i=nx-1;
for (j = 0; j <= ny-1; j++)         for (j = 0; j <= ny-1; j++)
{           {
if isnan(by[j * nx + i]) continue;
derx[j * nx + i] = ( (3*by[j * nx + i]) + (-4*by[j * nx + (i-1)]) - (-by[j * nx + (i-2)]) )*0.5;              derx[j * nx + i] = ( (3*by[j * nx + i]) + (-4*by[j * nx + (i-1)]) - (-by[j * nx + (i-2)]) )*0.5;
}           }

j=0;         j=0;
for (i = 0; i <= nx-1; i++)         for (i = 0; i <= nx-1; i++)
{           {
if isnan(bx[j * nx + i]) continue;
dery[j * nx + i] = ( (-3*bx[j*nx + i]) + (4*bx[(j+1) * nx + i]) - (bx[(j+2) * nx + i]) )*0.5;              dery[j * nx + i] = ( (-3*bx[j*nx + i]) + (4*bx[(j+1) * nx + i]) - (bx[(j+2) * nx + i]) )*0.5;
}           }

j=ny-1;         j=ny-1;
for (i = 0; i <= nx-1; i++)         for (i = 0; i <= nx-1; i++)
{           {
if isnan(bx[j * nx + i]) continue;
dery[j * nx + i] = ( (3*bx[j * nx + i]) + (-4*bx[(j-1) * nx + i]) - (-bx[(j-2) * nx + i]) )*0.5;              dery[j * nx + i] = ( (3*bx[j * nx + i]) + (-4*bx[(j-1) * nx + i]) - (-bx[(j-2) * nx + i]) )*0.5;
}           }

/* Just some print statements
for (i = 0; i < nx; i++)          for (i = 0; i <= nx-1; i++)
{           {
for (j = 0; j < ny; j++)              for (j = 0; j <= ny-1; j++)
{               {
printf("j=%d\n",j);                 // calculate jz at all points
printf("i=%d\n",i);                 jz[j * nx + i]            = (derx[j * nx + i]-dery[j * nx + i]);       // jz is in units of Gauss/pix
printf("dery[j*nx+i]=%f\n",dery[j*nx+i]);                 jz_err[j * nx + i]        = 0.5*sqrt( (bx_err[(j+1) * nx + i]*bx_err[(j+1) * nx + i]) + (bx_err[(j-1) * nx + i]*bx_err[(j-1) * nx + i]) +
printf("derx[j*nx+i]=%f\n",derx[j*nx+i]);                                              (by_err[j * nx + (i+1)]*by_err[j * nx + (i+1)]) + (by_err[j * nx + (i-1)]*by_err[j * nx + (i-1)]) ) ;
printf("bx[j*nx+i]=%f\n",bx[j*nx+i]);                 jz_err_squared[j * nx + i]= (jz_err[j * nx + i]*jz_err[j * nx + i]);
}               }
}           }
*/

return 0;
}

/*===========================================*/

/* Example function 9:  Compute quantities on Jz array */
// Compute mean and total current on Jz array.

int computeJzsmooth(float *bx, float *by, int *dims, float *jz, float *jz_smooth, float *jz_err, float *jz_rms_err, float *jz_err_squared_smooth,
float *mean_jz_ptr, float *mean_jz_err_ptr, float *us_i_ptr, float *us_i_err_ptr, int *mask, int *bitmask,
float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery)

{

int nx = dims[0];
int ny = dims[1];
int i = 0;
int j = 0;
double curl = 0.0;
double us_i = 0.0;
double err = 0.0;

if (nx <= 0 || ny <= 0) return 1;

/* At this point, use the smoothed Jz array with a Gaussian (FWHM of 4 pix and truncation width of 12 pixels) but keep the original array dimensions*/
for (i = 0; i <= nx-1; i++)         for (i = 0; i <= nx-1; i++)
{           {
for (j = 0; j <= ny-1; j++)             for (j = 0; j <= ny-1; j++)
{             {
// if ( (derx[j * nx + i]-dery[j * nx + i]) == 0) continue;
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;                if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;
curl +=     (derx[j * nx + i]-dery[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref)*(0.00010)*(1/MUNAUGHT)*(1000.); /* curl is in units of mA / m^2 */                 if isnan(derx[j * nx + i]) continue;
us_i += fabs(derx[j * nx + i]-dery[j * nx + i])*(1/cdelt1)*(rsun_ref/rsun_obs)*(0.00010)*(1/MUNAUGHT);         /* us_i is in units of A  / m^2 */                 if isnan(dery[j * nx + i]) continue;
jz[j * nx + i] = (derx[j * nx + i]-dery[j * nx + i]);                                                          /* jz is in units of Gauss/pix */                 if isnan(jz[j * nx + i]) continue;
curl +=     (jz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref)*(0.00010)*(1/MUNAUGHT)*(1000.); /* curl is in units of mA / m^2 */
us_i += fabs(jz[j * nx + i])*(cdelt1/1)*(rsun_ref/rsun_obs)*(0.00010)*(1/MUNAUGHT);         /* us_i is in units of A */
err  += (jz_err[j * nx + i]*jz_err[j * nx + i]);
}             }
}           }

mean_curl        = (curl/count_mask);          /* Calculate mean vertical current density (mean_jz) and total unsigned vertical current (us_i) using smoothed Jz array and continue conditions above */
printf("mean_curl=%f\n",mean_curl);
printf("cdelt1, what is it?=%f\n",cdelt1);
*mean_jz_ptr     = curl/(count_mask);        /* mean_jz gets populated as MEANJZD */         *mean_jz_ptr     = curl/(count_mask);        /* mean_jz gets populated as MEANJZD */
*us_i_ptr        = (us_i);                   /* us_i gets populated as MEANJZD */
*us_i_ptr        = (us_i);                   /* us_i gets populated as TOTUSJZ */
*us_i_err_ptr    = (sqrt(err))*fabs((cdelt1/1)*(rsun_ref/rsun_obs)*(0.00010)*(1/MUNAUGHT)); // error in the quantity TOTUSJZ

printf("MEANJZD=%f\n",*mean_jz_ptr);
printf("MEANJZD_err=%f\n",*mean_jz_err_ptr);

printf("TOTUSJZ=%g\n",*us_i_ptr);
printf("TOTUSJZ_err=%g\n",*us_i_err_ptr);

return 0;         return 0;

} }

/*===========================================*/ /*===========================================*/
/* Example function 9:  Twist Parameter, alpha */

// The twist parameter, alpha, is defined as alpha = Jz/Bz and the units are in 1/Mm  /* Example function 10:  Twist Parameter, alpha */

// The twist parameter, alpha, is defined as alpha = Jz/Bz. In this case, the calculation
// for alpha is calculated in the following way (different from Leka and Barnes' approach):

// (sum of all positive Bz + abs(sum of all negative Bz)) = avg Bz
// (abs(sum of all Jz at positive Bz) + abs(sum of all Jz at negative Bz)) = avg Jz
// avg alpha = avg Jz / avg Bz

// The sign is assigned as follows:
// If the sum of all Bz is greater than 0, then evaluate the sum of Jz at the positive Bz pixels.
// If this value is > 0, then alpha is > 0.
// If this value is < 0, then alpha is <0.
//
// If the sum of all Bz is less than 0, then evaluate the sum of Jz at the negative Bz pixels.
// If this value is > 0, then alpha is < 0.
// If this value is < 0, then alpha is > 0.

// The units of alpha are in 1/Mm
// The units of Jz are in Gauss/pix; the units of Bz are in Gauss. // The units of Jz are in Gauss/pix; the units of Bz are in Gauss.
// //
// Therefore, the units of Jz/Bz = (Gauss/pix)(1/Gauss)(pix/arcsec)(arsec/meter)(meter/Mm), or // Therefore, the units of Jz/Bz = (Gauss/pix)(1/Gauss)(pix/arcsec)(arsec/meter)(meter/Mm), or
//                               = (Gauss/pix)(1/Gauss)(1/CDELT1)(RSUN_OBS/RSUN_REF)(10^6) //                               = (Gauss/pix)(1/Gauss)(1/CDELT1)(RSUN_OBS/RSUN_REF)(10^6)
//                               = 1/Mm //                               = 1/Mm

int computeAlpha(float *bz, int *dims, float *jz, float *mean_alpha_ptr, int *mask, int *bitmask,  int computeAlpha(float *jz_err, float *bz_err, float *bz, int *dims, float *jz, float *jz_smooth, float *mean_alpha_ptr, float *mean_alpha_err_ptr, int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs)
float cdelt1, double rsun_ref, double rsun_obs)
{ {
int nx = dims[0], ny = dims[1];          int nx = dims[0];
int i, j, count_mask=0;          int ny = dims[1];
int i = 0;
int j = 0;
double a = 0.0;
double b = 0.0;
double c = 0.0;
double d = 0.0;
double sum1 = 0.0;
double sum2 = 0.0;
double sum3 = 0.0;
double sum4 = 0.0;
double sum = 0.0;
double sum5 = 0.0;
double sum6 = 0.0;
double sum_err = 0.0;

if (nx <= 0 || ny <= 0) return 1;         if (nx <= 0 || ny <= 0) return 1;

*mean_alpha_ptr = 0.0;
float aa, bb, cc, bznew, alpha2, sum=0.0;

for (i = 1; i < nx-1; i++)         for (i = 1; i < nx-1; i++)
{           {
for (j = 1; j < ny-1; j++)             for (j = 1; j < ny-1; j++)
 Line 614  int computeAlpha(float *bz, int *dims, f
 Line 710  int computeAlpha(float *bz, int *dims, f
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;                 if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;
if isnan(jz[j * nx + i]) continue;                 if isnan(jz[j * nx + i]) continue;
if isnan(bz[j * nx + i]) continue;                 if isnan(bz[j * nx + i]) continue;
if (jz[j * nx + i]     == 0.0) continue;
if (bz_err[j * nx + i] == 0.0) continue;
if (bz[j * nx + i] == 0.0) continue;                 if (bz[j * nx + i] == 0.0) continue;
sum += (jz[j * nx + i] / bz[j * nx + i])*((1/cdelt1)*(rsun_obs/rsun_ref)*(1000000.)) ; /* the units for (jz/bz) are 1/Mm */                  if (bz[j * nx + i] >  0) sum1 += ( bz[j * nx + i] ); a++;
if (bz[j * nx + i] <= 0) sum2 += ( bz[j * nx + i] ); b++;
if (bz[j * nx + i] >  0) sum3 += ( jz[j * nx + i] ); c++;
if (bz[j * nx + i] <= 0) sum4 += ( jz[j * nx + i] ); d++;
sum5    += bz[j * nx + i];
/* sum_err is a fractional uncertainty */
sum_err += sqrt(((jz_err[j * nx + i]*jz_err[j * nx + i])/(jz[j * nx + i]*jz[j * nx + i])) + ((bz_err[j * nx + i]*bz_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i]))) * fabs( ( (jz[j * nx + i]) / (bz[j * nx + i]) ) *(1/cdelt1)*(rsun_obs/rsun_ref)*(1000000.));
}               }
}           }

printf("cdelt1=%f,rsun_ref=%f,rsun_obs=%f\n",cdelt1,rsun_ref,rsun_obs);          sum     = (((fabs(sum3))+(fabs(sum4)))/((fabs(sum2))+sum1))*((1/cdelt1)*(rsun_obs/rsun_ref)*(1000000.)); /* the units for (jz/bz) are 1/Mm */
printf("sum=%f\n",sum);          /* Determine the sign of alpha */
*mean_alpha_ptr = sum/count_mask; /* Units are 1/Mm */          if ((sum5 > 0) && (sum3 >  0)) sum=sum;
if ((sum5 > 0) && (sum3 <= 0)) sum=-sum;
if ((sum5 < 0) && (sum4 <= 0)) sum=sum;
if ((sum5 < 0) && (sum4 >  0)) sum=-sum;

*mean_alpha_ptr = sum; /* Units are 1/Mm */
*mean_alpha_err_ptr    = (sqrt(sum_err*sum_err)) / ((a+b+c+d)*100.0); // error in the quantity (sum)/(count_mask); factor of 100 comes from converting percent

printf("MEANALP=%f\n",*mean_alpha_ptr);
printf("MEANALP_err=%f\n",*mean_alpha_err_ptr);

return 0;         return 0;
} }

/*===========================================*/ /*===========================================*/
/* Example function 10:  Helicity (mean current helicty, mean unsigned current helicity, and mean absolute current helicity) */  /* Example function 11:  Helicity (mean current helicty, total unsigned current helicity, absolute value of net current helicity) */

//  The current helicity is defined as Bz*Jz and the units are G^2 / m //  The current helicity is defined as Bz*Jz and the units are G^2 / m
//  The units of Jz are in G/pix; the units of Bz are in G. //  The units of Jz are in G/pix; the units of Bz are in G.
//  Therefore, the units of Bz*Jz = (Gauss)*(Gauss/pix) = (Gauss^2/pix)(pix/arcsec)(arcsec/m)  //  Therefore, the units of Bz*Jz = (Gauss)*(Gauss/pix) = (Gauss^2/pix)(pix/arcsec)(arcsec/meter)
//                                                      = (Gauss^2/pix)(1/CDELT1)(RSUN_OBS/RSUN_REF) //                                                      = (Gauss^2/pix)(1/CDELT1)(RSUN_OBS/RSUN_REF)
//                                                      = G^2 / m. //                                                      = G^2 / m.

int computeHelicity(float *jz_err, float *jz_rms_err, float *bz_err, float *bz, int *dims, float *jz, float *mean_ih_ptr,
int computeHelicity(float *bz, int *dims, float *jz, float *mean_ih_ptr, float *total_us_ih_ptr,                      float *mean_ih_err_ptr, float *total_us_ih_ptr, float *total_abs_ih_ptr,
float *total_abs_ih_ptr, int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs)                      float *total_us_ih_err_ptr, float *total_abs_ih_err_ptr, int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs)

{ {

int nx = dims[0], ny = dims[1];          int nx = dims[0];
int i, j, count_mask=0;          int ny = dims[1];
int i = 0;
int j = 0;
double sum = 0.0;
double sum2 = 0.0;
double sum_err = 0.0;

if (nx <= 0 || ny <= 0) return 1;         if (nx <= 0 || ny <= 0) return 1;

*mean_ih_ptr = 0.0;
float sum=0.0, sum2=0.0;

for (j = 0; j < ny; j++)
{
for (i = 0; i < nx; i++)                 for (i = 0; i < nx; i++)
{                 {
for (j = 0; j < ny; j++)
{
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;                 if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;
if isnan(jz[j * nx + i]) continue;                 if isnan(jz[j * nx + i]) continue;
if isnan(bz[j * nx + i]) continue;                 if isnan(bz[j * nx + i]) continue;
if (bz[j * nx + i] == 0.0) continue;                 if (bz[j * nx + i] == 0.0) continue;
if (jz[j * nx + i] == 0.0) continue;                 if (jz[j * nx + i] == 0.0) continue;
sum  +=     (jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref);                    sum     +=     (jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); // contributes to MEANJZH and ABSNJZH
sum2 += fabs(jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref);                    sum2    += fabs(jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); // contributes to TOTUSJH
sum_err += sqrt(((jz_err[j * nx + i]*jz_err[j * nx + i])/(jz[j * nx + i]*jz[j * nx + i])) + ((bz_err[j * nx + i]*bz_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i]))) * fabs(jz[j * nx + i]*bz[j * nx + i]*(1/cdelt1)*(rsun_obs/rsun_ref));
}                 }
}          }

printf("(1/cdelt1)*(rsun_obs/rsun_ref)=%f\n",(1/cdelt1)*(rsun_obs/rsun_ref));
*mean_ih_ptr     = sum/count_mask; /* Units are G^2 / m ; keyword is MEANJZH */             *mean_ih_ptr     = sum/count_mask; /* Units are G^2 / m ; keyword is MEANJZH */
*total_us_ih_ptr = sum2;           /* Units are G^2 / m */          *total_us_ih_ptr      = sum2           ; /* Units are G^2 / m ; keyword is TOTUSJH */
*total_abs_ih_ptr= fabs(sum);      /* Units are G^2 / m */          *total_abs_ih_ptr     = fabs(sum)      ; /* Units are G^2 / m ; keyword is ABSNJZH */

*mean_ih_err_ptr      = (sqrt(sum_err*sum_err)) / (count_mask*100.0)    ;  // error in the quantity MEANJZH
*total_us_ih_err_ptr  = (sqrt(sum_err*sum_err)) / (100.0)               ;  // error in the quantity TOTUSJH
*total_abs_ih_err_ptr = (sqrt(sum_err*sum_err)) / (100.0)               ;  // error in the quantity ABSNJZH

printf("MEANJZH=%f\n",*mean_ih_ptr);
printf("MEANJZH_err=%f\n",*mean_ih_err_ptr);

printf("TOTUSJH=%f\n",*total_us_ih_ptr);
printf("TOTUSJH_err=%f\n",*total_us_ih_err_ptr);

printf("ABSNJZH=%f\n",*total_abs_ih_ptr);
printf("ABSNJZH_err=%f\n",*total_abs_ih_err_ptr);

return 0;         return 0;
} }

/*===========================================*/ /*===========================================*/
/* Example function 11:  Sum of Absolute Value per polarity  */  /* Example function 12:  Sum of Absolute Value per polarity  */

//  The Sum of the Absolute Value per polarity is defined as the following: //  The Sum of the Absolute Value per polarity is defined as the following:
//  fabs(sum(jz gt 0)) + fabs(sum(jz lt 0)) and the units are in Amperes. //  fabs(sum(jz gt 0)) + fabs(sum(jz lt 0)) and the units are in Amperes.
//  The units of jz are in G/pix. In this case, we would have the following: //  The units of jz are in G/pix. In this case, we would have the following:
//  Jz = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS)(RSUN_REF/RSUN_OBS)(RSUN_OBS/RSUN_REF), //  Jz = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS)(RSUN_REF/RSUN_OBS)(RSUN_OBS/RSUN_REF),
//     = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS) //     = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS)
//
//  The error in this quantity is the same as the error in the mean vertical current (mean_jz_err).

int computeSumAbsPerPolarity(float *bz, float *jz, int *dims, float *totaljzptr,  int computeSumAbsPerPolarity(float *jz_err, float *bz_err, float *bz, float *jz, int *dims, float *totaljzptr, float *totaljz_err_ptr,

{ {
int nx = dims[0], ny = dims[1];          int nx = dims[0];
int i, j, count_mask=0;          int ny = dims[1];
int i=0;
int j=0;
double sum1=0.0;
double sum2=0.0;
double err=0.0;
*totaljzptr=0.0;

if (nx <= 0 || ny <= 0) return 1;         if (nx <= 0 || ny <= 0) return 1;

*totaljzptr=0.0;
float sum1=0.0, sum2=0.0;

for (i = 0; i < nx; i++)         for (i = 0; i < nx; i++)
{           {
for (j = 0; j < ny; j++)             for (j = 0; j < ny; j++)
{               {
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;                 if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;
if isnan(bz[j * nx + i]) continue;
if (bz[j * nx + i] >  0) sum1 += ( jz[j * nx + i])*(1/cdelt1)*(0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs);                 if (bz[j * nx + i] >  0) sum1 += ( jz[j * nx + i])*(1/cdelt1)*(0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs);
if (bz[j * nx + i] <= 0) sum2 += ( jz[j * nx + i])*(1/cdelt1)*(0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs);                 if (bz[j * nx + i] <= 0) sum2 += ( jz[j * nx + i])*(1/cdelt1)*(0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs);
err += (jz_err[j * nx + i]*jz_err[j * nx + i]);
}               }
}           }

*totaljzptr = fabs(sum1) + fabs(sum2);  /* Units are A */         *totaljzptr = fabs(sum1) + fabs(sum2);  /* Units are A */
*totaljz_err_ptr = sqrt(err)*(1/cdelt1)*fabs((0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs));
printf("SAVNCPP=%g\n",*totaljzptr);
printf("SAVNCPP_err=%g\n",*totaljz_err_ptr);

return 0;         return 0;
} }

/*===========================================*/ /*===========================================*/
/* Example function 12:  Mean photospheric excess magnetic energy and total photospheric excess magnetic energy density */  /* Example function 13:  Mean photospheric excess magnetic energy and total photospheric excess magnetic energy density */
// The units for magnetic energy density in cgs are ergs per cubic centimeter. The formula B^2/8*PI integrated over all space, dV // The units for magnetic energy density in cgs are ergs per cubic centimeter. The formula B^2/8*PI integrated over all space, dV
// automatically yields erg per cubic centimeter for an input B in Gauss.  // automatically yields erg per cubic centimeter for an input B in Gauss. Note that the 8*PI can come out of the integral; thus,
// the integral is over B^2 dV and the 8*PI is divided at the end.
// //
// Total magnetic energy is the magnetic energy density times dA, or the area, and the units are thus ergs/cm. To convert // Total magnetic energy is the magnetic energy density times dA, or the area, and the units are thus ergs/cm. To convert
// ergs per centimeter cubed to ergs per centimeter, simply multiply by the area per pixel in cm: // ergs per centimeter cubed to ergs per centimeter, simply multiply by the area per pixel in cm:
// erg/cm^3(CDELT1)^2(RSUN_REF/RSUN_OBS)^2(100.)^2  //   erg/cm^3*(CDELT1^2)*(RSUN_REF/RSUN_OBS ^2)*(100.^2)
// = erg/cm^3(0.5 arcsec/pix)^2(722500m/arcsec)^2(100cm/m)^2  // = erg/cm^3*(0.5 arcsec/pix)^2(722500m/arcsec)^2(100cm/m)^2
// = erg/cm^3(1.30501e15)  // = erg/cm^3*(1.30501e15)
// = erg/cm(1/pix^2) // = erg/cm(1/pix^2)

int computeFreeEnergy(float *bx, float *by, float *bpx, float *bpy, int *dims,  int computeFreeEnergy(float *bx_err, float *by_err, float *bx, float *by, float *bpx, float *bpy, int *dims,
float cdelt1, double rsun_ref, double rsun_obs)                                           float cdelt1, double rsun_ref, double rsun_obs)

{ {
int nx = dims[0], ny = dims[1];          int nx = dims[0];
int i, j, count_mask=0;          int ny = dims[1];
int i = 0;
if (nx <= 0 || ny <= 0) return 1;          int j = 0;
double sum = 0.0;
double sum1 = 0.0;
double err = 0.0;
*totpotptr=0.0;         *totpotptr=0.0;
*meanpotptr=0.0;         *meanpotptr=0.0;
float sum=0.0;
if (nx <= 0 || ny <= 0) return 1;

for (i = 0; i < nx; i++)         for (i = 0; i < nx; i++)
{           {
for (j = 0; j < ny; j++)             for (j = 0; j < ny; j++)
{               {
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;                  if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;
sum += ((    ((bx[j * nx + i])*(bx[j * nx + i]) + (by[j * nx + i])*(by[j * nx + i]) ) -  ((bpx[j * nx + i])*(bpx[j * nx + i]) + (bpy[j * nx + i])*(bpy[j * nx + i]))  )/8.*PI);                   if isnan(bx[j * nx + i]) continue;
if isnan(by[j * nx + i]) continue;
sum  += ( ((bpx[j * nx + i] - bx[j * nx + i])*(bpx[j * nx + i] - bx[j * nx + i])) + ((bpy[j * nx + i] - by[j * nx + i])*(bpy[j * nx + i] - by[j * nx + i])) )*(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0);
sum1 += ( ((bpx[j * nx + i] - bx[j * nx + i])*(bpx[j * nx + i] - bx[j * nx + i])) + ((bpy[j * nx + i] - by[j * nx + i])*(bpy[j * nx + i] - by[j * nx + i])) );
err  += (4.0*bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i]) + (4.0*by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i]);
}               }
}           }

*meanpotptr = (sum)/(count_mask);              /* Units are ergs per cubic centimeter */          *meanpotptr      = (sum1/(8.*PI)) / (count_mask);     /* Units are ergs per cubic centimeter */
*totpotptr  = sum*(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0)*(count_mask);   /* Units of sum are ergs/cm^3, units of factor are cm^2/pix^2, units of count_mask are pix^2; therefore, units of totpotptr are ergs per centimeter */          *meanpot_err_ptr = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0) / (count_mask*8.*PI); // error in the quantity (sum)/(count_mask)

/* Units of sum are ergs/cm^3, units of factor are cm^2/pix^2; therefore, units of totpotptr are ergs per centimeter */
*totpotptr       = (sum)/(8.*PI);
*totpot_err_ptr  = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0*(1/(8.*PI)));

printf("MEANPOT=%g\n",*meanpotptr);
printf("MEANPOT_err=%g\n",*meanpot_err_ptr);

printf("TOTPOT=%g\n",*totpotptr);
printf("TOTPOT_err=%g\n",*totpot_err_ptr);

return 0;         return 0;
} }

/*===========================================*/ /*===========================================*/
/* Example function 13:  Mean 3D shear angle, area with shear greater than 45, mean horizontal shear angle, area with horizontal shear angle greater than 45 */  /* Example function 14:  Mean 3D shear angle, area with shear greater than 45, mean horizontal shear angle, area with horizontal shear angle greater than 45 */

int computeShearAngle(float *bx, float *by, float *bz, float *bpx, float *bpy, float *bpz, int *dims,  int computeShearAngle(float *bx_err, float *by_err, float *bh_err, float *bx, float *by, float *bz, float *bpx, float *bpy, float *bpz, int *dims,
float *meanshear_angleptr, float *area_w_shear_gt_45ptr,                        float *meanshear_angleptr, float *meanshear_angle_err_ptr, float *area_w_shear_gt_45ptr, int *mask, int *bitmask)
float *meanshear_anglehptr, float *area_w_shear_gt_45hptr,
{ {
int nx = dims[0], ny = dims[1];          int nx = dims[0];
int i, j;          int ny = dims[1];
int i = 0;
if (nx <= 0 || ny <= 0) return 1;          int j = 0;
double dotproduct = 0.0;
double magnitude_potential = 0.0;
double magnitude_vector = 0.0;
double shear_angle = 0.0;
double err = 0.0;
double sum = 0.0;
double count = 0.0;
*area_w_shear_gt_45ptr=0.0;         *area_w_shear_gt_45ptr=0.0;
*meanshear_angleptr=0.0;         *meanshear_angleptr=0.0;
float dotproduct, magnitude_potential, magnitude_vector, shear_angle=0.0, sum = 0.0, count=0.0, count_mask=0.0;
float dotproducth, magnitude_potentialh, magnitude_vectorh, shear_angleh=0.0, sum1 = 0.0, counth = 0.0;          if (nx <= 0 || ny <= 0) return 1;

for (i = 0; i < nx; i++)         for (i = 0; i < nx; i++)
{           {
 Line 777  int computeShearAngle(float *bx, float *
 Line 944  int computeShearAngle(float *bx, float *
if isnan(bpy[j * nx + i]) continue;                  if isnan(bpy[j * nx + i]) continue;
if isnan(bpz[j * nx + i]) continue;                  if isnan(bpz[j * nx + i]) continue;
if isnan(bz[j * nx + i]) continue;                  if isnan(bz[j * nx + i]) continue;
if isnan(bx[j * nx + i]) continue;
if isnan(by[j * nx + i]) continue;
/* For mean 3D shear angle, area with shear greater than 45*/                  /* For mean 3D shear angle, area with shear greater than 45*/
dotproduct            = (bpx[j * nx + i])*(bx[j * nx + i]) + (bpy[j * nx + i])*(by[j * nx + i]) + (bpz[j * nx + i])*(bz[j * nx + i]);                  dotproduct            = (bpx[j * nx + i])*(bx[j * nx + i]) + (bpy[j * nx + i])*(by[j * nx + i]) + (bpz[j * nx + i])*(bz[j * nx + i]);
magnitude_potential   = sqrt((bpx[j * nx + i]*bpx[j * nx + i]) + (bpy[j * nx + i]*bpy[j * nx + i]) + (bpz[j * nx + i]*bpz[j * nx + i]));                  magnitude_potential   = sqrt((bpx[j * nx + i]*bpx[j * nx + i]) + (bpy[j * nx + i]*bpy[j * nx + i]) + (bpz[j * nx + i]*bpz[j * nx + i]));
 Line 784  int computeShearAngle(float *bx, float *
 Line 953  int computeShearAngle(float *bx, float *
shear_angle           = acos(dotproduct/(magnitude_potential*magnitude_vector))*(180./PI);                  shear_angle           = acos(dotproduct/(magnitude_potential*magnitude_vector))*(180./PI);
count ++;                  count ++;
sum += shear_angle ;                  sum += shear_angle ;
err += -(1./(1.- sqrt(bx_err[j * nx + i]*bx_err[j * nx + i]+by_err[j * nx + i]*by_err[j * nx + i]+bh_err[j * nx + i]*bh_err[j * nx + i])));
if (shear_angle > 45) count_mask ++;                  if (shear_angle > 45) count_mask ++;
}               }
}           }

/* For mean 3D shear angle, area with shear greater than 45*/         /* For mean 3D shear angle, area with shear greater than 45*/
*meanshear_angleptr = (sum)/(count);              /* Units are degrees */         *meanshear_angleptr = (sum)/(count);              /* Units are degrees */
printf("count=%f\n",count);          *area_w_shear_gt_45ptr   = (count_mask/(count))*(100.0);/* The area here is a fractional area -- the % of the total area */
*area_w_shear_gt_45ptr = (count_mask/(count))*(100.);  /* The area here is a fractional area -- the % of the total area */
printf("MEANSHR=%f\n",*meanshear_angleptr);
printf("MEANSHR_err=%f\n",*meanshear_angle_err_ptr);

return 0;         return 0;
} }
 Line 913  void greenpot(float *bx, float *by, floa
 Line 1085  void greenpot(float *bx, float *by, floa

/*===========END OF KEIJI'S CODE =========================*/ /*===========END OF KEIJI'S CODE =========================*/

char *sw_functions_version() // Returns CVS version of sw_functions.c
{
return strdup("\$Id\$");
}

/* ---------------- end of this file ----------------*/ /* ---------------- end of this file ----------------*/

Legend:
 Removed from v.1.3 changed lines Added in v.1.15