version 1.10, 2013/05/21 00:01:34
|
version 1.17, 2013/07/24 02:35:08
|
Line 73 int computeAbsFlux(float *bz_err, float |
|
Line 73 int computeAbsFlux(float *bz_err, float |
|
| |
{ | { |
| |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask=0; |
int ny = dims[1]; |
double sum,err=0.0; |
int i = 0; |
|
int j = 0; |
if (nx <= 0 || ny <= 0) return 1; |
int count_mask = 0; |
|
double sum = 0.0; |
|
double err = 0.0; |
*absFlux = 0.0; | *absFlux = 0.0; |
*mean_vf_ptr =0.0; | *mean_vf_ptr =0.0; |
| |
|
|
|
if (nx <= 0 || ny <= 0) return 1; |
|
|
for (i = 0; i < nx; i++) | for (i = 0; i < nx; i++) |
{ | { |
for (j = 0; j < ny; j++) | for (j = 0; j < ny; j++) |
Line 89 int computeAbsFlux(float *bz_err, float |
|
Line 93 int computeAbsFlux(float *bz_err, float |
|
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
if isnan(bz[j * nx + i]) continue; | if isnan(bz[j * nx + i]) continue; |
sum += (fabs(bz[j * nx + i])); | sum += (fabs(bz[j * nx + i])); |
|
//printf("i,j,bz[j * nx + i]=%d,%d,%f\n",i,j,bz[j * nx + i]); |
err += bz_err[j * nx + i]*bz_err[j * nx + i]; | err += bz_err[j * nx + i]*bz_err[j * nx + i]; |
count_mask++; | count_mask++; |
} | } |
Line 97 int computeAbsFlux(float *bz_err, float |
|
Line 102 int computeAbsFlux(float *bz_err, float |
|
*mean_vf_ptr = sum*cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0; | *mean_vf_ptr = sum*cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0; |
*mean_vf_err_ptr = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0); // error in the unsigned flux | *mean_vf_err_ptr = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0); // error in the unsigned flux |
*count_mask_ptr = count_mask; | *count_mask_ptr = count_mask; |
printf("CMASK=%g\n",*count_mask_ptr); |
//printf("cdelt1=%f\n",cdelt1); |
printf("USFLUX=%g\n",*mean_vf_ptr); |
//printf("rsun_obs=%f\n",rsun_obs); |
printf("sum=%f\n",sum); |
//printf("rsun_ref=%f\n",rsun_ref); |
printf("USFLUX_err=%g\n",*mean_vf_err_ptr); |
//printf("CMASK=%g\n",*count_mask_ptr); |
|
//printf("USFLUX=%g\n",*mean_vf_ptr); |
|
//printf("sum=%f\n",sum); |
|
//printf("USFLUX_err=%g\n",*mean_vf_err_ptr); |
return 0; | return 0; |
} | } |
| |
Line 113 int computeBh(float *bx_err, float *by_e |
|
Line 121 int computeBh(float *bx_err, float *by_e |
|
| |
{ | { |
| |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask=0; |
int ny = dims[1]; |
float sum=0.0; |
int i = 0; |
|
int j = 0; |
|
int count_mask = 0; |
|
double sum = 0.0; |
*mean_hf_ptr = 0.0; | *mean_hf_ptr = 0.0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
Line 146 int computeBh(float *bx_err, float *by_e |
|
Line 157 int computeBh(float *bx_err, float *by_e |
|
int computeGamma(float *bz_err, float *bh_err, float *bx, float *by, float *bz, float *bh, int *dims, | int computeGamma(float *bz_err, float *bh_err, float *bx, float *by, float *bz, float *bh, int *dims, |
float *mean_gamma_ptr, float *mean_gamma_err_ptr, int *mask, int *bitmask) | float *mean_gamma_ptr, float *mean_gamma_err_ptr, int *mask, int *bitmask) |
{ | { |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask=0; |
int ny = dims[1]; |
|
int i = 0; |
if (nx <= 0 || ny <= 0) return 1; |
int j = 0; |
|
int count_mask = 0; |
|
double sum = 0.0; |
|
double err = 0.0; |
*mean_gamma_ptr=0.0; | *mean_gamma_ptr=0.0; |
float sum,err,err_value=0.0; |
|
| |
|
if (nx <= 0 || ny <= 0) return 1; |
| |
for (i = 0; i < nx; i++) | for (i = 0; i < nx; i++) |
{ | { |
Line 174 int computeGamma(float *bz_err, float *b |
|
Line 187 int computeGamma(float *bz_err, float *b |
|
} | } |
| |
*mean_gamma_ptr = sum/count_mask; | *mean_gamma_ptr = sum/count_mask; |
*mean_gamma_err_ptr = (sqrt(err*err))/(count_mask*100.); // error in the quantity (sum)/(count_mask) |
*mean_gamma_err_ptr = (sqrt(err*err))/(count_mask*100.0); // error in the quantity (sum)/(count_mask) |
printf("MEANGAM=%f\n",*mean_gamma_ptr); |
//printf("MEANGAM=%f\n",*mean_gamma_ptr); |
printf("MEANGAM_err=%f\n",*mean_gamma_err_ptr); |
//printf("MEANGAM_err=%f\n",*mean_gamma_err_ptr); |
return 0; | return 0; |
} | } |
| |
Line 187 int computeGamma(float *bz_err, float *b |
|
Line 200 int computeGamma(float *bz_err, float *b |
|
int computeB_total(float *bx_err, float *by_err, float *bz_err, float *bt_err, float *bx, float *by, float *bz, float *bt, int *dims, int *mask, int *bitmask) | int computeB_total(float *bx_err, float *by_err, float *bz_err, float *bt_err, float *bx, float *by, float *bz, float *bt, int *dims, int *mask, int *bitmask) |
{ | { |
| |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask=0; |
int ny = dims[1]; |
|
int i = 0; |
|
int j = 0; |
|
int count_mask = 0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
| |
Line 212 int computeB_total(float *bx_err, float |
|
Line 228 int computeB_total(float *bx_err, float |
|
int computeBtotalderivative(float *bt, int *dims, float *mean_derivative_btotal_ptr, int *mask, int *bitmask, float *derx_bt, float *dery_bt, float *bt_err, float *mean_derivative_btotal_err_ptr) | int computeBtotalderivative(float *bt, int *dims, float *mean_derivative_btotal_ptr, int *mask, int *bitmask, float *derx_bt, float *dery_bt, float *bt_err, float *mean_derivative_btotal_err_ptr) |
{ | { |
| |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask=0; |
int ny = dims[1]; |
|
int i = 0; |
if (nx <= 0 || ny <= 0) return 1; |
int j = 0; |
|
int count_mask = 0; |
|
double sum = 0.0; |
|
double err = 0.0; |
*mean_derivative_btotal_ptr = 0.0; | *mean_derivative_btotal_ptr = 0.0; |
float sum, err = 0.0; |
|
| |
|
if (nx <= 0 || ny <= 0) return 1; |
| |
/* brute force method of calculating the derivative (no consideration for edges) */ | /* brute force method of calculating the derivative (no consideration for edges) */ |
for (i = 1; i <= nx-2; i++) | for (i = 1; i <= nx-2; i++) |
Line 281 int computeBtotalderivative(float *bt, i |
|
Line 299 int computeBtotalderivative(float *bt, i |
|
| |
*mean_derivative_btotal_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram | *mean_derivative_btotal_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram |
*mean_derivative_btotal_err_ptr = (sqrt(err))/(count_mask); // error in the quantity (sum)/(count_mask) | *mean_derivative_btotal_err_ptr = (sqrt(err))/(count_mask); // error in the quantity (sum)/(count_mask) |
printf("MEANGBT=%f\n",*mean_derivative_btotal_ptr); |
//printf("MEANGBT=%f\n",*mean_derivative_btotal_ptr); |
printf("MEANGBT_err=%f\n",*mean_derivative_btotal_err_ptr); |
//printf("MEANGBT_err=%f\n",*mean_derivative_btotal_err_ptr); |
return 0; | return 0; |
} | } |
| |
Line 293 int computeBtotalderivative(float *bt, i |
|
Line 311 int computeBtotalderivative(float *bt, i |
|
int computeBhderivative(float *bh, float *bh_err, int *dims, float *mean_derivative_bh_ptr, float *mean_derivative_bh_err_ptr, int *mask, int *bitmask, float *derx_bh, float *dery_bh) | int computeBhderivative(float *bh, float *bh_err, int *dims, float *mean_derivative_bh_ptr, float *mean_derivative_bh_err_ptr, int *mask, int *bitmask, float *derx_bh, float *dery_bh) |
{ | { |
| |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask=0; |
int ny = dims[1]; |
|
int i = 0; |
|
int j = 0; |
|
int count_mask = 0; |
|
double sum= 0.0; |
|
double err =0.0; |
|
*mean_derivative_bh_ptr = 0.0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
| |
*mean_derivative_bh_ptr = 0.0; |
|
float sum,err = 0.0; |
|
|
|
/* brute force method of calculating the derivative (no consideration for edges) */ | /* brute force method of calculating the derivative (no consideration for edges) */ |
for (i = 1; i <= nx-2; i++) | for (i = 1; i <= nx-2; i++) |
{ | { |
Line 361 int computeBhderivative(float *bh, float |
|
Line 382 int computeBhderivative(float *bh, float |
|
| |
*mean_derivative_bh_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram | *mean_derivative_bh_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram |
*mean_derivative_bh_err_ptr = (sqrt(err))/(count_mask); // error in the quantity (sum)/(count_mask) | *mean_derivative_bh_err_ptr = (sqrt(err))/(count_mask); // error in the quantity (sum)/(count_mask) |
printf("MEANGBH=%f\n",*mean_derivative_bh_ptr); |
//printf("MEANGBH=%f\n",*mean_derivative_bh_ptr); |
printf("MEANGBH_err=%f\n",*mean_derivative_bh_err_ptr); |
//printf("MEANGBH_err=%f\n",*mean_derivative_bh_err_ptr); |
| |
return 0; | return 0; |
} | } |
Line 373 int computeBhderivative(float *bh, float |
|
Line 394 int computeBhderivative(float *bh, float |
|
int computeBzderivative(float *bz, float *bz_err, int *dims, float *mean_derivative_bz_ptr, float *mean_derivative_bz_err_ptr, int *mask, int *bitmask, float *derx_bz, float *dery_bz) | int computeBzderivative(float *bz, float *bz_err, int *dims, float *mean_derivative_bz_ptr, float *mean_derivative_bz_err_ptr, int *mask, int *bitmask, float *derx_bz, float *dery_bz) |
{ | { |
| |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask=0; |
int ny = dims[1]; |
|
int i = 0; |
|
int j = 0; |
|
int count_mask = 0; |
|
double sum = 0.0; |
|
double err = 0.0; |
|
*mean_derivative_bz_ptr = 0.0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
| |
*mean_derivative_bz_ptr = 0.0; |
|
float sum,err = 0.0; |
|
|
|
/* brute force method of calculating the derivative (no consideration for edges) */ | /* brute force method of calculating the derivative (no consideration for edges) */ |
for (i = 1; i <= nx-2; i++) | for (i = 1; i <= nx-2; i++) |
{ | { |
Line 450 int computeBzderivative(float *bz, float |
|
Line 474 int computeBzderivative(float *bz, float |
|
| |
*mean_derivative_bz_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram | *mean_derivative_bz_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram |
*mean_derivative_bz_err_ptr = (sqrt(err))/(count_mask); // error in the quantity (sum)/(count_mask) | *mean_derivative_bz_err_ptr = (sqrt(err))/(count_mask); // error in the quantity (sum)/(count_mask) |
printf("MEANGBZ=%f\n",*mean_derivative_bz_ptr); |
//printf("MEANGBZ=%f\n",*mean_derivative_bz_ptr); |
printf("MEANGBZ_err=%f\n",*mean_derivative_bz_err_ptr); |
//printf("MEANGBZ_err=%f\n",*mean_derivative_bz_err_ptr); |
| |
return 0; | return 0; |
} | } |
Line 498 int computeJz(float *bx_err, float *by_e |
|
Line 522 int computeJz(float *bx_err, float *by_e |
|
| |
| |
{ | { |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask=0; |
int ny = dims[1]; |
|
int i = 0; |
|
int j = 0; |
|
int count_mask = 0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
float curl=0.0, us_i=0.0,test_perimeter=0.0,mean_curl=0.0; |
|
|
|
| |
/* Calculate the derivative*/ | /* Calculate the derivative*/ |
/* brute force method of calculating the derivative (no consideration for edges) */ | /* brute force method of calculating the derivative (no consideration for edges) */ |
| |
|
|
for (i = 1; i <= nx-2; i++) | for (i = 1; i <= nx-2; i++) |
{ | { |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
Line 556 int computeJz(float *bx_err, float *by_e |
|
Line 580 int computeJz(float *bx_err, float *by_e |
|
dery[j * nx + i] = ( (3*bx[j * nx + i]) + (-4*bx[(j-1) * nx + i]) - (-bx[(j-2) * nx + i]) )*0.5; | dery[j * nx + i] = ( (3*bx[j * nx + i]) + (-4*bx[(j-1) * nx + i]) - (-bx[(j-2) * nx + i]) )*0.5; |
} | } |
| |
|
for (i = 1; i <= nx-2; i++) |
for (i = 0; i <= nx-1; i++) |
|
{ | { |
for (j = 0; j <= ny-1; j++) |
for (j = 1; j <= ny-2; j++) |
{ | { |
// calculate jz at all points | // calculate jz at all points |
|
|
jz[j * nx + i] = (derx[j * nx + i]-dery[j * nx + i]); // jz is in units of Gauss/pix | jz[j * nx + i] = (derx[j * nx + i]-dery[j * nx + i]); // jz is in units of Gauss/pix |
| |
|
// the next 7 lines can be used with a for loop that goes from i=0;i<=nx-1 and j=0;j<=ny-1. |
|
//int i1, j1,i2, j2; |
|
//i1 = i + 1 ; if (i1 >nx-1){i1=nx-1;} |
|
//j1 = j + 1 ; if (j1 >ny-1){j1=ny-1;} |
|
//i2 = i - 1; if (i2 < 0){i2 = 0;} |
|
//j2 = j - 1; if (j2 < 0){i2 = 0;} |
|
//jz_err[j * nx + i] = 0.5*sqrt( (bx_err[j1 * nx + i]*bx_err[j1 * nx + i]) + (bx_err[j2 * nx + i]*bx_err[j2 * nx + i]) + |
|
// (by_err[j * nx + i1]*by_err[j * nx + i1]) + (by_err[j * nx + i2]*by_err[j * nx + i2]) ) ; |
|
|
jz_err[j * nx + i]=0.5*sqrt( (bx_err[(j+1) * nx + i]*bx_err[(j+1) * nx + i]) + (bx_err[(j-1) * nx + i]*bx_err[(j-1) * nx + i]) + | jz_err[j * nx + i]=0.5*sqrt( (bx_err[(j+1) * nx + i]*bx_err[(j+1) * nx + i]) + (bx_err[(j-1) * nx + i]*bx_err[(j-1) * nx + i]) + |
(by_err[j * nx + (i+1)]*by_err[j * nx + (i+1)]) + (by_err[j * nx + (i-1)]*by_err[j * nx + (i-1)]) ) ; | (by_err[j * nx + (i+1)]*by_err[j * nx + (i+1)]) + (by_err[j * nx + (i-1)]*by_err[j * nx + (i-1)]) ) ; |
jz_err_squared[j * nx + i]=(jz_err[j * nx + i]*jz_err[j * nx + i]); | jz_err_squared[j * nx + i]=(jz_err[j * nx + i]*jz_err[j * nx + i]); |
count_mask++; | count_mask++; |
|
|
} | } |
} | } |
|
|
return 0; | return 0; |
} | } |
| |
/*===========================================*/ | /*===========================================*/ |
| |
| |
/* Example function 9: Compute quantities on smoothed Jz array */ |
/* Example function 9: Compute quantities on Jz array */ |
|
// Compute mean and total current on Jz array. |
// All of the subsequent functions, including this one, use a smoothed Jz array. The smoothing is performed by Jesper's |
|
// fresize routines. These routines are located at /cvs/JSOC/proj/libs/interpolate. A Gaussian with a FWHM of 4 pixels |
|
// and truncation width of 12 pixels is used to smooth the array; however, a quick analysis shows that the mean values |
|
// of qualities like Jz and helicity do not change much as a result of smoothing. The smoothed array will, of course, |
|
// give a lower total Jz as the stron field pixels have been smoothed out to neighboring weaker field pixels. |
|
| |
int computeJzsmooth(float *bx, float *by, int *dims, float *jz, float *jz_smooth, float *jz_err, float *jz_rms_err, float *jz_err_squared_smooth, | int computeJzsmooth(float *bx, float *by, int *dims, float *jz, float *jz_smooth, float *jz_err, float *jz_rms_err, float *jz_err_squared_smooth, |
float *mean_jz_ptr, float *mean_jz_err_ptr, float *us_i_ptr, float *us_i_err_ptr, int *mask, int *bitmask, | float *mean_jz_ptr, float *mean_jz_err_ptr, float *us_i_ptr, float *us_i_err_ptr, int *mask, int *bitmask, |
Line 591 int computeJzsmooth(float *bx, float *by |
|
Line 619 int computeJzsmooth(float *bx, float *by |
|
| |
{ | { |
| |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask=0; |
int ny = dims[1]; |
|
int i = 0; |
|
int j = 0; |
|
int count_mask = 0; |
|
double curl = 0.0; |
|
double us_i = 0.0; |
|
double err = 0.0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
| |
float curl,us_i,test_perimeter,mean_curl,err=0.0; |
|
|
|
|
|
/* At this point, use the smoothed Jz array with a Gaussian (FWHM of 4 pix and truncation width of 12 pixels) but keep the original array dimensions*/ | /* At this point, use the smoothed Jz array with a Gaussian (FWHM of 4 pix and truncation width of 12 pixels) but keep the original array dimensions*/ |
for (i = 0; i <= nx-1; i++) | for (i = 0; i <= nx-1; i++) |
{ | { |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
//printf("%f ",jz_smooth[j * nx + i]); |
|
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
if isnan(derx[j * nx + i]) continue; | if isnan(derx[j * nx + i]) continue; |
if isnan(dery[j * nx + i]) continue; | if isnan(dery[j * nx + i]) continue; |
//if isnan(jz_smooth[j * nx + i]) continue; |
|
//curl += (jz_smooth[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref)*(0.00010)*(1/MUNAUGHT)*(1000.); /* curl is in units of mA / m^2 */ |
|
//us_i += fabs(jz_smooth[j * nx + i])*(cdelt1/1)*(rsun_ref/rsun_obs)*(0.00010)*(1/MUNAUGHT); /* us_i is in units of A */ |
|
//jz_rms_err[j * nx + i] = sqrt(jz_err_squared_smooth[j * nx + i]); |
|
//err += (jz_rms_err[j * nx + i]*jz_rms_err[j * nx + i]); |
|
if isnan(jz[j * nx + i]) continue; | if isnan(jz[j * nx + i]) continue; |
curl += (jz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref)*(0.00010)*(1/MUNAUGHT)*(1000.); /* curl is in units of mA / m^2 */ | curl += (jz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref)*(0.00010)*(1/MUNAUGHT)*(1000.); /* curl is in units of mA / m^2 */ |
us_i += fabs(jz[j * nx + i])*(cdelt1/1)*(rsun_ref/rsun_obs)*(0.00010)*(1/MUNAUGHT); /* us_i is in units of A */ | us_i += fabs(jz[j * nx + i])*(cdelt1/1)*(rsun_ref/rsun_obs)*(0.00010)*(1/MUNAUGHT); /* us_i is in units of A */ |
err += (jz_err[j * nx + i]*jz_err[j * nx + i]); | err += (jz_err[j * nx + i]*jz_err[j * nx + i]); |
count_mask++; | count_mask++; |
} | } |
//printf("\n"); |
|
} | } |
| |
/* Calculate mean vertical current density (mean_curl) and total unsigned vertical current (us_i) using smoothed Jz array and continue conditions above */ |
/* Calculate mean vertical current density (mean_jz) and total unsigned vertical current (us_i) using smoothed Jz array and continue conditions above */ |
*mean_jz_ptr = curl/(count_mask); /* mean_jz gets populated as MEANJZD */ | *mean_jz_ptr = curl/(count_mask); /* mean_jz gets populated as MEANJZD */ |
*mean_jz_err_ptr = (sqrt(err))*fabs(((rsun_obs/rsun_ref)*(0.00010)*(1/MUNAUGHT)*(1000.))/(count_mask)); // error in the quantity MEANJZD | *mean_jz_err_ptr = (sqrt(err))*fabs(((rsun_obs/rsun_ref)*(0.00010)*(1/MUNAUGHT)*(1000.))/(count_mask)); // error in the quantity MEANJZD |
| |
*us_i_ptr = (us_i); /* us_i gets populated as TOTUSJZ */ | *us_i_ptr = (us_i); /* us_i gets populated as TOTUSJZ */ |
*us_i_err_ptr = (sqrt(err))*fabs((cdelt1/1)*(rsun_ref/rsun_obs)*(0.00010)*(1/MUNAUGHT)); // error in the quantity TOTUSJZ | *us_i_err_ptr = (sqrt(err))*fabs((cdelt1/1)*(rsun_ref/rsun_obs)*(0.00010)*(1/MUNAUGHT)); // error in the quantity TOTUSJZ |
| |
printf("MEANJZD=%f\n",*mean_jz_ptr); |
//printf("MEANJZD=%f\n",*mean_jz_ptr); |
printf("MEANJZD_err=%f\n",*mean_jz_err_ptr); |
//printf("MEANJZD_err=%f\n",*mean_jz_err_ptr); |
| |
printf("TOTUSJZ=%g\n",*us_i_ptr); |
//printf("TOTUSJZ=%g\n",*us_i_ptr); |
printf("TOTUSJZ_err=%g\n",*us_i_err_ptr); |
//printf("TOTUSJZ_err=%g\n",*us_i_err_ptr); |
| |
return 0; | return 0; |
| |
Line 669 int computeJzsmooth(float *bx, float *by |
|
Line 693 int computeJzsmooth(float *bx, float *by |
|
int computeAlpha(float *jz_err, float *bz_err, float *bz, int *dims, float *jz, float *jz_smooth, float *mean_alpha_ptr, float *mean_alpha_err_ptr, int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) | int computeAlpha(float *jz_err, float *bz_err, float *bz, int *dims, float *jz, float *jz_smooth, float *mean_alpha_ptr, float *mean_alpha_err_ptr, int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) |
| |
{ | { |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask, a,b,c,d=0; |
int ny = dims[1]; |
|
int i = 0; |
|
int j = 0; |
|
int count_mask = 0; |
|
double a = 0.0; |
|
double b = 0.0; |
|
double c = 0.0; |
|
double d = 0.0; |
|
double sum1 = 0.0; |
|
double sum2 = 0.0; |
|
double sum3 = 0.0; |
|
double sum4 = 0.0; |
|
double sum = 0.0; |
|
double sum5 = 0.0; |
|
double sum6 = 0.0; |
|
double sum_err = 0.0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
| |
float aa, bb, cc, bznew, alpha2, sum1, sum2, sum3, sum4, sum, sum5, sum6, sum_err=0.0; |
|
|
|
for (i = 1; i < nx-1; i++) | for (i = 1; i < nx-1; i++) |
{ | { |
for (j = 1; j < ny-1; j++) | for (j = 1; j < ny-1; j++) |
{ | { |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
//if isnan(jz_smooth[j * nx + i]) continue; |
|
if isnan(jz[j * nx + i]) continue; | if isnan(jz[j * nx + i]) continue; |
if isnan(bz[j * nx + i]) continue; | if isnan(bz[j * nx + i]) continue; |
//if (jz_smooth[j * nx + i] == 0) continue; |
|
if (jz[j * nx + i] == 0.0) continue; | if (jz[j * nx + i] == 0.0) continue; |
if (bz_err[j * nx + i] == 0.0) continue; | if (bz_err[j * nx + i] == 0.0) continue; |
if (bz[j * nx + i] == 0.0) continue; | if (bz[j * nx + i] == 0.0) continue; |
if (bz[j * nx + i] > 0) sum1 += ( bz[j * nx + i] ); a++; | if (bz[j * nx + i] > 0) sum1 += ( bz[j * nx + i] ); a++; |
if (bz[j * nx + i] <= 0) sum2 += ( bz[j * nx + i] ); b++; | if (bz[j * nx + i] <= 0) sum2 += ( bz[j * nx + i] ); b++; |
//if (bz[j * nx + i] > 0) sum3 += ( jz_smooth[j * nx + i]); |
|
//if (bz[j * nx + i] <= 0) sum4 += ( jz_smooth[j * nx + i]); |
|
if (bz[j * nx + i] > 0) sum3 += ( jz[j * nx + i] ); c++; | if (bz[j * nx + i] > 0) sum3 += ( jz[j * nx + i] ); c++; |
if (bz[j * nx + i] <= 0) sum4 += ( jz[j * nx + i] ); d++; | if (bz[j * nx + i] <= 0) sum4 += ( jz[j * nx + i] ); d++; |
sum5 += bz[j * nx + i]; | sum5 += bz[j * nx + i]; |
Line 710 int computeAlpha(float *jz_err, float *b |
|
Line 743 int computeAlpha(float *jz_err, float *b |
|
if ((sum5 < 0) && (sum4 > 0)) sum=-sum; | if ((sum5 < 0) && (sum4 > 0)) sum=-sum; |
| |
*mean_alpha_ptr = sum; /* Units are 1/Mm */ | *mean_alpha_ptr = sum; /* Units are 1/Mm */ |
*mean_alpha_err_ptr = (sqrt(sum_err*sum_err)) / ((a+b+c+d)*100.); // error in the quantity (sum)/(count_mask); factor of 100 comes from converting percent |
*mean_alpha_err_ptr = (sqrt(sum_err*sum_err)) / ((a+b+c+d)*100.0); // error in the quantity (sum)/(count_mask); factor of 100 comes from converting percent |
| |
printf("a=%d\n",a); |
//printf("MEANALP=%f\n",*mean_alpha_ptr); |
printf("b=%d\n",b); |
//printf("MEANALP_err=%f\n",*mean_alpha_err_ptr); |
printf("d=%d\n",d); |
|
printf("c=%d\n",c); |
|
|
|
printf("MEANALP=%f\n",*mean_alpha_ptr); |
|
printf("MEANALP_err=%f\n",*mean_alpha_err_ptr); |
|
| |
return 0; | return 0; |
} | } |
Line 738 int computeHelicity(float *jz_err, float |
|
Line 766 int computeHelicity(float *jz_err, float |
|
| |
{ | { |
| |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask=0; |
int ny = dims[1]; |
|
int i = 0; |
|
int j = 0; |
|
int count_mask = 0; |
|
double sum = 0.0; |
|
double sum2 = 0.0; |
|
double sum_err = 0.0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
| |
float sum,sum2,sum_err=0.0; |
|
|
|
for (i = 0; i < nx; i++) | for (i = 0; i < nx; i++) |
{ | { |
for (j = 0; j < ny; j++) | for (j = 0; j < ny; j++) |
Line 765 int computeHelicity(float *jz_err, float |
|
Line 797 int computeHelicity(float *jz_err, float |
|
*total_us_ih_ptr = sum2 ; /* Units are G^2 / m ; keyword is TOTUSJH */ | *total_us_ih_ptr = sum2 ; /* Units are G^2 / m ; keyword is TOTUSJH */ |
*total_abs_ih_ptr = fabs(sum) ; /* Units are G^2 / m ; keyword is ABSNJZH */ | *total_abs_ih_ptr = fabs(sum) ; /* Units are G^2 / m ; keyword is ABSNJZH */ |
| |
*mean_ih_err_ptr = (sqrt(sum_err*sum_err)) / (count_mask*100.) ; // error in the quantity MEANJZH |
*mean_ih_err_ptr = (sqrt(sum_err*sum_err)) / (count_mask*100.0) ; // error in the quantity MEANJZH |
*total_us_ih_err_ptr = (sqrt(sum_err*sum_err)) / (100.) ; // error in the quantity TOTUSJH |
*total_us_ih_err_ptr = (sqrt(sum_err*sum_err)) / (100.0) ; // error in the quantity TOTUSJH |
*total_abs_ih_err_ptr = (sqrt(sum_err*sum_err)) / (100.) ; // error in the quantity ABSNJZH |
*total_abs_ih_err_ptr = (sqrt(sum_err*sum_err)) / (100.0) ; // error in the quantity ABSNJZH |
| |
printf("MEANJZH=%f\n",*mean_ih_ptr); |
//printf("MEANJZH=%f\n",*mean_ih_ptr); |
printf("MEANJZH_err=%f\n",*mean_ih_err_ptr); |
//printf("MEANJZH_err=%f\n",*mean_ih_err_ptr); |
| |
printf("TOTUSJH=%f\n",*total_us_ih_ptr); |
//printf("TOTUSJH=%f\n",*total_us_ih_ptr); |
printf("TOTUSJH_err=%f\n",*total_us_ih_err_ptr); |
//printf("TOTUSJH_err=%f\n",*total_us_ih_err_ptr); |
| |
printf("ABSNJZH=%f\n",*total_abs_ih_ptr); |
//printf("ABSNJZH=%f\n",*total_abs_ih_ptr); |
printf("ABSNJZH_err=%f\n",*total_abs_ih_err_ptr); |
//printf("ABSNJZH_err=%f\n",*total_abs_ih_err_ptr); |
| |
return 0; | return 0; |
} | } |
Line 796 int computeSumAbsPerPolarity(float *jz_e |
|
Line 828 int computeSumAbsPerPolarity(float *jz_e |
|
int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) | int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) |
| |
{ | { |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask=0; |
int ny = dims[1]; |
|
int i=0; |
|
int j=0; |
|
int count_mask=0; |
|
double sum1=0.0; |
|
double sum2=0.0; |
|
double err=0.0; |
|
*totaljzptr=0.0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
| |
*totaljzptr=0.0; |
|
float sum1,sum2,err=0.0; |
|
|
|
for (i = 0; i < nx; i++) | for (i = 0; i < nx; i++) |
{ | { |
for (j = 0; j < ny; j++) | for (j = 0; j < ny; j++) |
Line 819 int computeSumAbsPerPolarity(float *jz_e |
|
Line 855 int computeSumAbsPerPolarity(float *jz_e |
|
| |
*totaljzptr = fabs(sum1) + fabs(sum2); /* Units are A */ | *totaljzptr = fabs(sum1) + fabs(sum2); /* Units are A */ |
*totaljz_err_ptr = sqrt(err)*(1/cdelt1)*fabs((0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs)); | *totaljz_err_ptr = sqrt(err)*(1/cdelt1)*fabs((0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs)); |
printf("SAVNCPP=%g\n",*totaljzptr); |
//printf("SAVNCPP=%g\n",*totaljzptr); |
printf("SAVNCPP_err=%g\n",*totaljz_err_ptr); |
//printf("SAVNCPP_err=%g\n",*totaljz_err_ptr); |
| |
return 0; | return 0; |
} | } |
Line 828 int computeSumAbsPerPolarity(float *jz_e |
|
Line 864 int computeSumAbsPerPolarity(float *jz_e |
|
/*===========================================*/ | /*===========================================*/ |
/* Example function 13: Mean photospheric excess magnetic energy and total photospheric excess magnetic energy density */ | /* Example function 13: Mean photospheric excess magnetic energy and total photospheric excess magnetic energy density */ |
// The units for magnetic energy density in cgs are ergs per cubic centimeter. The formula B^2/8*PI integrated over all space, dV | // The units for magnetic energy density in cgs are ergs per cubic centimeter. The formula B^2/8*PI integrated over all space, dV |
// automatically yields erg per cubic centimeter for an input B in Gauss. |
// automatically yields erg per cubic centimeter for an input B in Gauss. Note that the 8*PI can come out of the integral; thus, |
|
// the integral is over B^2 dV and the 8*PI is divided at the end. |
// | // |
// Total magnetic energy is the magnetic energy density times dA, or the area, and the units are thus ergs/cm. To convert | // Total magnetic energy is the magnetic energy density times dA, or the area, and the units are thus ergs/cm. To convert |
// ergs per centimeter cubed to ergs per centimeter, simply multiply by the area per pixel in cm: | // ergs per centimeter cubed to ergs per centimeter, simply multiply by the area per pixel in cm: |
Line 842 int computeFreeEnergy(float *bx_err, flo |
|
Line 879 int computeFreeEnergy(float *bx_err, flo |
|
float cdelt1, double rsun_ref, double rsun_obs) | float cdelt1, double rsun_ref, double rsun_obs) |
| |
{ | { |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask=0; |
int ny = dims[1]; |
|
int i = 0; |
if (nx <= 0 || ny <= 0) return 1; |
int j = 0; |
|
int count_mask = 0; |
|
double sum = 0.0; |
|
double sum1 = 0.0; |
|
double err = 0.0; |
*totpotptr=0.0; | *totpotptr=0.0; |
*meanpotptr=0.0; | *meanpotptr=0.0; |
float sum,err=0.0; |
|
|
if (nx <= 0 || ny <= 0) return 1; |
| |
for (i = 0; i < nx; i++) | for (i = 0; i < nx; i++) |
{ | { |
Line 858 int computeFreeEnergy(float *bx_err, flo |
|
Line 899 int computeFreeEnergy(float *bx_err, flo |
|
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
if isnan(bx[j * nx + i]) continue; | if isnan(bx[j * nx + i]) continue; |
if isnan(by[j * nx + i]) continue; | if isnan(by[j * nx + i]) continue; |
sum += ( ((bpx[j * nx + i] - bx[j * nx + i])*(bpx[j * nx + i] - bx[j * nx + i])) + ((bpy[j * nx + i] - by[j * nx + i])*(bpy[j * nx + i] - by[j * nx + i])) ) / 8.*PI; |
sum += ( ((bpx[j * nx + i] - bx[j * nx + i])*(bpx[j * nx + i] - bx[j * nx + i])) + ((bpy[j * nx + i] - by[j * nx + i])*(bpy[j * nx + i] - by[j * nx + i])) )*(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0); |
|
sum1 += ( ((bpx[j * nx + i] - bx[j * nx + i])*(bpx[j * nx + i] - bx[j * nx + i])) + ((bpy[j * nx + i] - by[j * nx + i])*(bpy[j * nx + i] - by[j * nx + i])) ); |
err += (4.0*bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i]) + (4.0*by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i]); | err += (4.0*bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i]) + (4.0*by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i]); |
//err += 2.0*bz_err[j * nx + i]*bz_err[j * nx + i]; |
|
count_mask++; | count_mask++; |
} | } |
} | } |
| |
*meanpotptr = (sum) / (count_mask); /* Units are ergs per cubic centimeter */ |
*meanpotptr = (sum1/(8.*PI)) / (count_mask); /* Units are ergs per cubic centimeter */ |
*meanpot_err_ptr = (sqrt(err)) / (count_mask*8.*PI); // error in the quantity (sum)/(count_mask) |
*meanpot_err_ptr = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0) / (count_mask*8.*PI); // error in the quantity (sum)/(count_mask) |
//*mean_derivative_bz_err_ptr = (sqrt(err))/(count_mask); // error in the quantity (sum)/(count_mask) |
|
| |
/* Units of sum are ergs/cm^3, units of factor are cm^2/pix^2; therefore, units of totpotptr are ergs per centimeter */ | /* Units of sum are ergs/cm^3, units of factor are cm^2/pix^2; therefore, units of totpotptr are ergs per centimeter */ |
*totpotptr = sum*(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0*(1/8.*PI)) ; |
*totpotptr = (sum)/(8.*PI); |
*totpot_err_ptr = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0*(1/8.*PI)); |
*totpot_err_ptr = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0*(1/(8.*PI))); |
| |
printf("MEANPOT=%g\n",*meanpotptr); |
//printf("MEANPOT=%g\n",*meanpotptr); |
printf("MEANPOT_err=%g\n",*meanpot_err_ptr); |
//printf("MEANPOT_err=%g\n",*meanpot_err_ptr); |
| |
printf("TOTPOT=%g\n",*totpotptr); |
//printf("TOTPOT=%g\n",*totpotptr); |
printf("TOTPOT_err=%g\n",*totpot_err_ptr); |
//printf("TOTPOT_err=%g\n",*totpot_err_ptr); |
| |
return 0; | return 0; |
} | } |
Line 888 int computeFreeEnergy(float *bx_err, flo |
|
Line 928 int computeFreeEnergy(float *bx_err, flo |
|
int computeShearAngle(float *bx_err, float *by_err, float *bh_err, float *bx, float *by, float *bz, float *bpx, float *bpy, float *bpz, int *dims, | int computeShearAngle(float *bx_err, float *by_err, float *bh_err, float *bx, float *by, float *bz, float *bpx, float *bpy, float *bpz, int *dims, |
float *meanshear_angleptr, float *meanshear_angle_err_ptr, float *area_w_shear_gt_45ptr, int *mask, int *bitmask) | float *meanshear_angleptr, float *meanshear_angle_err_ptr, float *area_w_shear_gt_45ptr, int *mask, int *bitmask) |
{ | { |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j; |
int ny = dims[1]; |
|
int i = 0; |
|
int j = 0; |
|
int count_mask = 0; |
|
double dotproduct = 0.0; |
|
double magnitude_potential = 0.0; |
|
double magnitude_vector = 0.0; |
|
double shear_angle = 0.0; |
|
double err = 0.0; |
|
double sum = 0.0; |
|
double count = 0.0; |
|
*area_w_shear_gt_45ptr = 0.0; |
|
*meanshear_angleptr = 0.0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
| |
//*area_w_shear_gt_45ptr=0.0; |
|
//*meanshear_angleptr=0.0; |
|
float dotproduct, magnitude_potential, magnitude_vector, shear_angle,err=0.0, sum = 0.0, count=0.0, count_mask=0.0; |
|
|
|
for (i = 0; i < nx; i++) | for (i = 0; i < nx; i++) |
{ | { |
for (j = 0; j < ny; j++) | for (j = 0; j < ny; j++) |
Line 923 int computeShearAngle(float *bx_err, flo |
|
Line 971 int computeShearAngle(float *bx_err, flo |
|
/* For mean 3D shear angle, area with shear greater than 45*/ | /* For mean 3D shear angle, area with shear greater than 45*/ |
*meanshear_angleptr = (sum)/(count); /* Units are degrees */ | *meanshear_angleptr = (sum)/(count); /* Units are degrees */ |
*meanshear_angle_err_ptr = (sqrt(err*err))/(count); // error in the quantity (sum)/(count_mask) | *meanshear_angle_err_ptr = (sqrt(err*err))/(count); // error in the quantity (sum)/(count_mask) |
*area_w_shear_gt_45ptr = (count_mask/(count))*(100.);/* The area here is a fractional area -- the % of the total area */ |
*area_w_shear_gt_45ptr = (count_mask/(count))*(100.0);/* The area here is a fractional area -- the % of the total area */ |
| |
printf("MEANSHR=%f\n",*meanshear_angleptr); |
//printf("MEANSHR=%f\n",*meanshear_angleptr); |
printf("MEANSHR_err=%f\n",*meanshear_angle_err_ptr); |
//printf("MEANSHR_err=%f\n",*meanshear_angle_err_ptr); |
| |
return 0; | return 0; |
} | } |
Line 1047 void greenpot(float *bx, float *by, floa |
|
Line 1095 void greenpot(float *bx, float *by, floa |
|
| |
| |
/*===========END OF KEIJI'S CODE =========================*/ | /*===========END OF KEIJI'S CODE =========================*/ |
|
|
|
char *sw_functions_version() // Returns CVS version of sw_functions.c |
|
{ |
|
return strdup("$Id$"); |
|
} |
|
|
/* ---------------- end of this file ----------------*/ | /* ---------------- end of this file ----------------*/ |