(file) Return to sw_functions.c CVS log (file) (dir) Up to [Development] / JSOC / proj / sharp / apps

Diff for /JSOC/proj/sharp/apps/sw_functions.c between version 1.18 and 1.19

version 1.18, 2013/10/01 01:57:44 version 1.19, 2013/10/18 23:36:02
Line 63 
Line 63 
 //  =(Gauss/pix^2)(0.5 arcsec/pix)^2(722500m/arcsec)^2(100cm/m)^2 //  =(Gauss/pix^2)(0.5 arcsec/pix)^2(722500m/arcsec)^2(100cm/m)^2
 //  =(1.30501e15)Gauss*cm^2 //  =(1.30501e15)Gauss*cm^2
  
 //  The disambig mask value selects only the pixels with values of 5 or 7 -- that is,  
 //  5: pixels for which the radial acute disambiguation solution was chosen  
 //  7: pixels for which the radial acute and NRWA disambiguation agree  
   
 int computeAbsFlux(float *bz_err, float *bz, int *dims, float *absFlux, int computeAbsFlux(float *bz_err, float *bz, int *dims, float *absFlux,
                    float *mean_vf_ptr, float *mean_vf_err_ptr, float *count_mask_ptr, int *mask,                    float *mean_vf_ptr, float *mean_vf_err_ptr, float *count_mask_ptr, int *mask,
                    int *bitmask, float cdelt1, double rsun_ref, double rsun_obs)                    int *bitmask, float cdelt1, double rsun_ref, double rsun_obs)
Line 179  int computeGamma(float *bz_err, float *b
Line 175  int computeGamma(float *bz_err, float *b
                     if isnan(bz_err[j * nx + i]) continue;                     if isnan(bz_err[j * nx + i]) continue;
                     if isnan(bh_err[j * nx + i]) continue;                     if isnan(bh_err[j * nx + i]) continue;
                     if (bz[j * nx + i] == 0) continue;                     if (bz[j * nx + i] == 0) continue;
                     sum += (atan(fabs(bz[j * nx + i]/bh[j * nx + i] )))*(180./PI);                      sum += fabs(atan(bh[j * nx + i]/fabs(bz[j * nx + i])))*(180./PI);
                     err += (( sqrt ( ((bz_err[j * nx + i]*bz_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i])) + ((bh_err[j * nx + i]*bh_err[j * nx + i])/(bh[j * nx + i]*bh[j * nx + i])))  * fabs(bz[j * nx + i]/bh[j * nx + i]) ) / (1 + (bz[j * nx + i]/bh[j * nx + i])*(bz[j * nx + i]/bh[j * nx + i]))) *(180./PI);                     err += (( sqrt ( ((bz_err[j * nx + i]*bz_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i])) + ((bh_err[j * nx + i]*bh_err[j * nx + i])/(bh[j * nx + i]*bh[j * nx + i])))  * fabs(bz[j * nx + i]/bh[j * nx + i]) ) / (1 + (bz[j * nx + i]/bh[j * nx + i])*(bz[j * nx + i]/bh[j * nx + i]))) *(180./PI);
                     count_mask++;                     count_mask++;
                   }                   }
Line 587  int computeJz(float *bx_err, float *by_e
Line 583  int computeJz(float *bx_err, float *by_e
                // calculate jz at all points                // calculate jz at all points
  
                jz[j * nx + i]            = (derx[j * nx + i]-dery[j * nx + i]);       // jz is in units of Gauss/pix                jz[j * nx + i]            = (derx[j * nx + i]-dery[j * nx + i]);       // jz is in units of Gauss/pix
   
                // the next 7 lines can be used with a for loop that goes from i=0;i<=nx-1 and j=0;j<=ny-1.  
                //int i1, j1,i2, j2;  
                //i1 = i + 1 ; if (i1 >nx-1){i1=nx-1;}  
                //j1 = j + 1 ; if (j1 >ny-1){j1=ny-1;}  
                //i2 = i - 1; if (i2 < 0){i2 = 0;}  
                //j2 = j - 1; if (j2 < 0){i2 = 0;}  
                //jz_err[j * nx + i]        = 0.5*sqrt( (bx_err[j1 * nx + i]*bx_err[j1 * nx + i]) + (bx_err[j2 * nx + i]*bx_err[j2 * nx + i]) +  
                //                                     (by_err[j * nx + i1]*by_err[j * nx + i1]) + (by_err[j * nx + i2]*by_err[j * nx + i2]) ) ;  
   
                jz_err[j * nx + i]        = 0.5*sqrt( (bx_err[(j+1) * nx + i]*bx_err[(j+1) * nx + i]) + (bx_err[(j-1) * nx + i]*bx_err[(j-1) * nx + i]) +                jz_err[j * nx + i]        = 0.5*sqrt( (bx_err[(j+1) * nx + i]*bx_err[(j+1) * nx + i]) + (bx_err[(j-1) * nx + i]*bx_err[(j-1) * nx + i]) +
                                                     (by_err[j * nx + (i+1)]*by_err[j * nx + (i+1)]) + (by_err[j * nx + (i-1)]*by_err[j * nx + (i-1)]) ) ;                                                     (by_err[j * nx + (i+1)]*by_err[j * nx + (i+1)]) + (by_err[j * nx + (i-1)]*by_err[j * nx + (i-1)]) ) ;
                jz_err_squared[j * nx + i]= (jz_err[j * nx + i]*jz_err[j * nx + i]);                jz_err_squared[j * nx + i]= (jz_err[j * nx + i]*jz_err[j * nx + i]);
Line 668  int computeJzsmooth(float *bx, float *by
Line 654  int computeJzsmooth(float *bx, float *by
 /* Example function 10:  Twist Parameter, alpha */ /* Example function 10:  Twist Parameter, alpha */
  
 // The twist parameter, alpha, is defined as alpha = Jz/Bz. In this case, the calculation // The twist parameter, alpha, is defined as alpha = Jz/Bz. In this case, the calculation
 // for alpha is calculated in the following way (different from Leka and Barnes' approach):  // for alpha is weighted by Bz (following Hagino et al., http://adsabs.harvard.edu/abs/2004PASJ...56..831H):
  
        // (sum of all positive Bz + abs(sum of all negative Bz)) = avg Bz         // numerator   = sum of all Jz*Bz
        // (abs(sum of all Jz at positive Bz) + abs(sum of all Jz at negative Bz)) = avg Jz         // denominator = sum of Bz*Bz
        // avg alpha = avg Jz / avg Bz         // alpha       = numerator/denominator
   
 // The sign is assigned as follows:  
 // If the sum of all Bz is greater than 0, then evaluate the sum of Jz at the positive Bz pixels.  
 // If this value is > 0, then alpha is > 0.  
 // If this value is < 0, then alpha is <0.  
 //  
 // If the sum of all Bz is less than 0, then evaluate the sum of Jz at the negative Bz pixels.  
 // If this value is > 0, then alpha is < 0.  
 // If this value is < 0, then alpha is > 0.  
  
 // The units of alpha are in 1/Mm // The units of alpha are in 1/Mm
 // The units of Jz are in Gauss/pix; the units of Bz are in Gauss. // The units of Jz are in Gauss/pix; the units of Bz are in Gauss.
Line 697  int computeAlpha(float *jz_err, float *b
Line 674  int computeAlpha(float *jz_err, float *b
         int ny = dims[1];         int ny = dims[1];
         int i = 0;         int i = 0;
         int j = 0;         int j = 0;
         int count_mask = 0;          double alpha_total         = 0.0;
         double a = 0.0;          double C                   = ((1/cdelt1)*(rsun_obs/rsun_ref)*(1000000.));
         double b = 0.0;          double total               = 0.0;
         double c = 0.0;          double A                   = 0.0;
         double d = 0.0;          double B                   = 0.0;
         double sum1 = 0.0;  
         double sum2 = 0.0;  
         double sum3 = 0.0;  
         double sum4 = 0.0;  
         double sum = 0.0;  
         double sum5 = 0.0;  
         double sum6 = 0.0;  
         double sum_err = 0.0;  
  
         if (nx <= 0 || ny <= 0) return 1;         if (nx <= 0 || ny <= 0) return 1;
   
         for (i = 1; i < nx-1; i++)         for (i = 1; i < nx-1; i++)
           {           {
             for (j = 1; j < ny-1; j++)             for (j = 1; j < ny-1; j++)
Line 721  int computeAlpha(float *jz_err, float *b
Line 689  int computeAlpha(float *jz_err, float *b
                 if isnan(jz[j * nx + i]) continue;                 if isnan(jz[j * nx + i]) continue;
                 if isnan(bz[j * nx + i]) continue;                 if isnan(bz[j * nx + i]) continue;
                 if (jz[j * nx + i]     == 0.0) continue;                 if (jz[j * nx + i]     == 0.0) continue;
                 if (bz_err[j * nx + i] == 0.0) continue;  
                 if (bz[j * nx + i]     == 0.0) continue;                 if (bz[j * nx + i]     == 0.0) continue;
                 if (bz[j * nx + i] >  0) sum1 += ( bz[j * nx + i] ); a++;                  //if (jz_err[j * nx + i] > abs(jz[j * nx + i]) ) continue;
                 if (bz[j * nx + i] <= 0) sum2 += ( bz[j * nx + i] ); b++;                  //if (bz_err[j * nx + i] > abs(bz[j * nx + i]) ) continue;
                 if (bz[j * nx + i] >  0) sum3 += ( jz[j * nx + i] ); c++;                  A += jz[j*nx+i]*bz[j*nx+i];
                 if (bz[j * nx + i] <= 0) sum4 += ( jz[j * nx + i] ); d++;                  B += bz[j*nx+i]*bz[j*nx+i];
                 sum5    += bz[j * nx + i];  
                 /* sum_err is a fractional uncertainty */  
                 sum_err += sqrt(((jz_err[j * nx + i]*jz_err[j * nx + i])/(jz[j * nx + i]*jz[j * nx + i])) + ((bz_err[j * nx + i]*bz_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i]))) * fabs( ( (jz[j * nx + i]) / (bz[j * nx + i]) ) *(1/cdelt1)*(rsun_obs/rsun_ref)*(1000000.));  
                 count_mask++;  
               }               }
           }           }
  
         sum     = (((fabs(sum3))+(fabs(sum4)))/((fabs(sum2))+sum1))*((1/cdelt1)*(rsun_obs/rsun_ref)*(1000000.)); /* the units for (jz/bz) are 1/Mm */          for (i = 1; i < nx-1; i++)
             {
         /* Determine the sign of alpha */              for (j = 1; j < ny-1; j++)
         if ((sum5 > 0) && (sum3 >  0)) sum=sum;                {
         if ((sum5 > 0) && (sum3 <= 0)) sum=-sum;                  if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;
         if ((sum5 < 0) && (sum4 <= 0)) sum=sum;                  if isnan(jz[j * nx + i])   continue;
         if ((sum5 < 0) && (sum4 >  0)) sum=-sum;                  if isnan(bz[j * nx + i])   continue;
                   if (jz[j * nx + i] == 0.0) continue;
         *mean_alpha_ptr = sum; /* Units are 1/Mm */                  if (bz[j * nx + i] == 0.0) continue;
         *mean_alpha_err_ptr    = (sqrt(sum_err*sum_err)) / ((a+b+c+d)*100.0); // error in the quantity (sum)/(count_mask); factor of 100 comes from converting percent                  total += bz[j*nx+i]*bz[j*nx+i]*jz_err[j*nx+i]*jz_err[j*nx+i] + (jz[j*nx+i]-2*bz[j*nx+i]*A/B)*(jz[j*nx+i]-2*bz[j*nx+i]*A/B)*bz_err[j*nx+i]*bz_err[j*nx+i];
                 }
             }
  
         //printf("MEANALP=%f\n",*mean_alpha_ptr);          /* Determine the absolute value of alpha. The units for alpha are 1/Mm */
         //printf("MEANALP_err=%f\n",*mean_alpha_err_ptr);          alpha_total              = ((A/B)*C);
           *mean_alpha_ptr          = alpha_total;
           *mean_alpha_err_ptr      = (C/B)*(sqrt(total));
  
         return 0;         return 0;
 } }


Legend:
Removed from v.1.18  
changed lines
  Added in v.1.19

Karen Tian
Powered by
ViewCVS 0.9.4