(file) Return to sw_functions.c CVS log (file) (dir) Up to [Development] / JSOC / proj / sharp / apps

Diff for /JSOC/proj/sharp/apps/sw_functions.c between version 1.19 and 1.26

version 1.19, 2013/10/18 23:36:02 version 1.26, 2014/02/19 14:59:25
Line 20 
Line 20 
  
    The indices are calculated on the pixels in which the conf_disambig segment is greater than 70 and    The indices are calculated on the pixels in which the conf_disambig segment is greater than 70 and
    pixels in which the bitmap segment is greater than 30. These ranges are selected because the CCD    pixels in which the bitmap segment is greater than 30. These ranges are selected because the CCD
    coordinate bitmaps are interpolated.     coordinate bitmaps are interpolated for certain data (at the time of this CVS submit, all data
      prior to 2013.08.21_17:24:00_TAI contain interpolated bitmaps; data post-2013.08.21_17:24:00_TAI
      contain nearest-neighbor bitmaps).
  
    In the CCD coordinates, this means that we are selecting the pixels that equal 90 in conf_disambig    In the CCD coordinates, this means that we are selecting the pixels that equal 90 in conf_disambig
    and the pixels that equal 33 or 44 in bitmap. Here are the definitions of the pixel values:     and the pixels that equal 33 or 34 in bitmap. Here are the definitions of the pixel values:
  
    For conf_disambig:    For conf_disambig:
    50 : not all solutions agree (weak field method applied)    50 : not all solutions agree (weak field method applied)
Line 39 
Line 41 
  
    Written by Monica Bobra 15 August 2012    Written by Monica Bobra 15 August 2012
    Potential Field code (appended) written by Keiji Hayashi    Potential Field code (appended) written by Keiji Hayashi
      Error analysis modification 21 October 2013
  
 ===========================================*/ ===========================================*/
 #include <math.h> #include <math.h>
Line 60 
Line 63 
 //  To convert G to G*cm^2, simply multiply by the number of square centimeters per pixel. //  To convert G to G*cm^2, simply multiply by the number of square centimeters per pixel.
 //  As an order of magnitude estimate, we can assign 0.5 to CDELT1 and 722500m/arcsec to (RSUN_REF/RSUN_OBS). //  As an order of magnitude estimate, we can assign 0.5 to CDELT1 and 722500m/arcsec to (RSUN_REF/RSUN_OBS).
 //  (Gauss/pix^2)(CDELT1)^2(RSUN_REF/RSUN_OBS)^2(100.cm/m)^2 //  (Gauss/pix^2)(CDELT1)^2(RSUN_REF/RSUN_OBS)^2(100.cm/m)^2
 //  =(Gauss/pix^2)(0.5 arcsec/pix)^2(722500m/arcsec)^2(100cm/m)^2  //  =Gauss*cm^2
 //  =(1.30501e15)Gauss*cm^2  
  
 int computeAbsFlux(float *bz_err, float *bz, int *dims, float *absFlux, int computeAbsFlux(float *bz_err, float *bz, int *dims, float *absFlux,
                    float *mean_vf_ptr, float *mean_vf_err_ptr, float *count_mask_ptr, int *mask,                    float *mean_vf_ptr, float *mean_vf_err_ptr, float *count_mask_ptr, int *mask,
Line 89  int computeAbsFlux(float *bz_err, float
Line 91  int computeAbsFlux(float *bz_err, float
                   if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;                   if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;
                   if isnan(bz[j * nx + i]) continue;                   if isnan(bz[j * nx + i]) continue;
                   sum += (fabs(bz[j * nx + i]));                   sum += (fabs(bz[j * nx + i]));
                   //printf("i,j,bz[j * nx + i]=%d,%d,%f\n",i,j,bz[j * nx + i]);  
                   err += bz_err[j * nx + i]*bz_err[j * nx + i];                   err += bz_err[j * nx + i]*bz_err[j * nx + i];
                   count_mask++;                   count_mask++;
                 }                 }
Line 98  int computeAbsFlux(float *bz_err, float
Line 99  int computeAbsFlux(float *bz_err, float
      *mean_vf_ptr     = sum*cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0;      *mean_vf_ptr     = sum*cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0;
      *mean_vf_err_ptr = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0); // error in the unsigned flux      *mean_vf_err_ptr = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0); // error in the unsigned flux
      *count_mask_ptr  = count_mask;      *count_mask_ptr  = count_mask;
      //printf("cdelt1=%f\n",cdelt1);  
      //printf("rsun_obs=%f\n",rsun_obs);  
      //printf("rsun_ref=%f\n",rsun_ref);  
      //printf("CMASK=%g\n",*count_mask_ptr);  
      //printf("USFLUX=%g\n",*mean_vf_ptr);  
      //printf("sum=%f\n",sum);  
      //printf("USFLUX_err=%g\n",*mean_vf_err_ptr);  
      return 0;      return 0;
 } }
  
Line 131  int computeBh(float *bx_err, float *by_e
Line 125  int computeBh(float *bx_err, float *by_e
           {           {
             for (j = 0; j < ny; j++)             for (j = 0; j < ny; j++)
               {               {
                 if isnan(bx[j * nx + i]) continue;                   if isnan(bx[j * nx + i])
                 if isnan(by[j * nx + i]) continue;                   {
                       bh[j * nx + i] = NAN;
                       bh_err[j * nx + i] = NAN;
                       continue;
                    }
                    if isnan(by[j * nx + i])
                    {
                       bh[j * nx + i] = NAN;
                       bh_err[j * nx + i] = NAN;
                       continue;
                    }
                 bh[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] );                 bh[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] );
                 sum += bh[j * nx + i];                 sum += bh[j * nx + i];
                 bh_err[j * nx + i]=sqrt( bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i] + by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i])/ bh[j * nx + i];                 bh_err[j * nx + i]=sqrt( bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i] + by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i])/ bh[j * nx + i];
Line 148  int computeBh(float *bx_err, float *by_e
Line 152  int computeBh(float *bx_err, float *by_e
 /*===========================================*/ /*===========================================*/
 /* Example function 3: Calculate Gamma in units of degrees */ /* Example function 3: Calculate Gamma in units of degrees */
 // Native units of atan(x) are in radians; to convert from radians to degrees, multiply by (180./PI) // Native units of atan(x) are in radians; to convert from radians to degrees, multiply by (180./PI)
 // Redo calculation in radians for error analysis (since derivatives are only true in units of radians).  //
   // Error analysis calculations are done in radians (since derivatives are only true in units of radians),
   // and multiplied by (180./PI) at the end for consistency in units.
  
 int computeGamma(float *bz_err, float *bh_err, float *bx, float *by, float *bz, float *bh, int *dims, int computeGamma(float *bz_err, float *bh_err, float *bx, float *by, float *bz, float *bh, int *dims,
                  float *mean_gamma_ptr, float *mean_gamma_err_ptr, int *mask, int *bitmask)                  float *mean_gamma_ptr, float *mean_gamma_err_ptr, int *mask, int *bitmask)
Line 174  int computeGamma(float *bz_err, float *b
Line 180  int computeGamma(float *bz_err, float *b
                     if isnan(bz[j * nx + i]) continue;                     if isnan(bz[j * nx + i]) continue;
                     if isnan(bz_err[j * nx + i]) continue;                     if isnan(bz_err[j * nx + i]) continue;
                     if isnan(bh_err[j * nx + i]) continue;                     if isnan(bh_err[j * nx + i]) continue;
                       if isnan(bh[j * nx + i]) continue;
                     if (bz[j * nx + i] == 0) continue;                     if (bz[j * nx + i] == 0) continue;
                     sum += fabs(atan(bh[j * nx + i]/fabs(bz[j * nx + i])))*(180./PI);                     sum += fabs(atan(bh[j * nx + i]/fabs(bz[j * nx + i])))*(180./PI);
                     err += (( sqrt ( ((bz_err[j * nx + i]*bz_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i])) + ((bh_err[j * nx + i]*bh_err[j * nx + i])/(bh[j * nx + i]*bh[j * nx + i])))  * fabs(bz[j * nx + i]/bh[j * nx + i]) ) / (1 + (bz[j * nx + i]/bh[j * nx + i])*(bz[j * nx + i]/bh[j * nx + i]))) *(180./PI);                      err += (1/(1+((bh[j * nx + i]*bh[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i]))))*(1/(1+((bh[j * nx + i]*bh[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i])))) *
                              ( ((bh_err[j * nx + i]*bh_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i])) +
                                ((bh[j * nx + i]*bh[j * nx + i]*bz_err[j * nx + i]*bz_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i]*bz[j * nx + i]*bz[j * nx + i])) );
                     count_mask++;                     count_mask++;
                   }                   }
               }               }
           }           }
  
      *mean_gamma_ptr = sum/count_mask;      *mean_gamma_ptr = sum/count_mask;
      *mean_gamma_err_ptr = (sqrt(err*err))/(count_mask*100.0); // error in the quantity (sum)/(count_mask)       *mean_gamma_err_ptr = (sqrt(err)/(count_mask))*(180./PI);
      //printf("MEANGAM=%f\n",*mean_gamma_ptr);      //printf("MEANGAM=%f\n",*mean_gamma_ptr);
      //printf("MEANGAM_err=%f\n",*mean_gamma_err_ptr);      //printf("MEANGAM_err=%f\n",*mean_gamma_err_ptr);
      return 0;      return 0;
Line 208  int computeB_total(float *bx_err, float
Line 217  int computeB_total(float *bx_err, float
           {           {
             for (j = 0; j < ny; j++)             for (j = 0; j < ny; j++)
               {               {
                 if isnan(bx[j * nx + i]) continue;                   if isnan(bx[j * nx + i])
                 if isnan(by[j * nx + i]) continue;                   {
                 if isnan(bz[j * nx + i]) continue;                      bt[j * nx + i] = NAN;
                       bt_err[j * nx + i] = NAN;
                       continue;
                    }
                    if isnan(by[j * nx + i])
                    {
                       bt[j * nx + i] = NAN;
                       bt_err[j * nx + i] = NAN;
                       continue;
                    }
                    if isnan(bz[j * nx + i])
                    {
                       bt[j * nx + i] = NAN;
                       bt_err[j * nx + i] = NAN;
                       continue;
                    }
                 bt[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]);                 bt[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]);
                 bt_err[j * nx + i]=sqrt(bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i] + by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]*bz_err[j * nx + i]*bz_err[j * nx + i] )/bt[j * nx + i];                 bt_err[j * nx + i]=sqrt(bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i] + by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]*bz_err[j * nx + i]*bz_err[j * nx + i] )/bt[j * nx + i];
               }               }
Line 280  int computeBtotalderivative(float *bt, i
Line 304  int computeBtotalderivative(float *bt, i
           }           }
  
  
         for (i = 0; i <= nx-1; i++)          for (i = 1; i <= nx-2; i++)
           {           {
             for (j = 0; j <= ny-1; j++)              for (j = 1; j <= ny-2; j++)
             {             {
                if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;                if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;
                  if ( (derx_bt[j * nx + i] + dery_bt[j * nx + i]) == 0) continue;
                  if isnan(bt[j * nx + i])      continue;
                  if isnan(bt[(j+1) * nx + i])  continue;
                  if isnan(bt[(j-1) * nx + i])  continue;
                  if isnan(bt[j * nx + i-1])    continue;
                  if isnan(bt[j * nx + i+1])    continue;
                  if isnan(bt_err[j * nx + i])  continue;
                if isnan(derx_bt[j * nx + i]) continue;                if isnan(derx_bt[j * nx + i]) continue;
                if isnan(dery_bt[j * nx + i]) continue;                if isnan(dery_bt[j * nx + i]) continue;
                sum += sqrt( derx_bt[j * nx + i]*derx_bt[j * nx + i]  + dery_bt[j * nx + i]*dery_bt[j * nx + i]  ); /* Units of Gauss */                sum += sqrt( derx_bt[j * nx + i]*derx_bt[j * nx + i]  + dery_bt[j * nx + i]*dery_bt[j * nx + i]  ); /* Units of Gauss */
                err += (2.0)*bt_err[j * nx + i]*bt_err[j * nx + i];                 err += (((bt[(j+1) * nx + i]-bt[(j-1) * nx + i])*(bt[(j+1) * nx + i]-bt[(j-1) * nx + i])) * (bt_err[(j+1) * nx + i]*bt_err[(j+1) * nx + i] + bt_err[(j-1) * nx + i]*bt_err[(j-1) * nx + i])) / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i]  + dery_bt[j * nx + i]*dery_bt[j * nx + i]  ))+
                         (((bt[j * nx + (i+1)]-bt[j * nx + (i-1)])*(bt[j * nx + (i+1)]-bt[j * nx + (i-1)])) * (bt_err[j * nx + (i+1)]*bt_err[j * nx + (i+1)] + bt_err[j * nx + (i-1)]*bt_err[j * nx + (i-1)])) / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i]  + dery_bt[j * nx + i]*dery_bt[j * nx + i]  )) ;
                count_mask++;                count_mask++;
             }             }
           }           }
  
         *mean_derivative_btotal_ptr     = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram          *mean_derivative_btotal_ptr     = (sum)/(count_mask);
         *mean_derivative_btotal_err_ptr = (sqrt(err))/(count_mask); // error in the quantity (sum)/(count_mask)          *mean_derivative_btotal_err_ptr = (sqrt(err))/(count_mask);
         //printf("MEANGBT=%f\n",*mean_derivative_btotal_ptr);         //printf("MEANGBT=%f\n",*mean_derivative_btotal_ptr);
         //printf("MEANGBT_err=%f\n",*mean_derivative_btotal_err_ptr);         //printf("MEANGBT_err=%f\n",*mean_derivative_btotal_err_ptr);
   
         return 0;         return 0;
 } }
  
Line 368  int computeBhderivative(float *bh, float
Line 401  int computeBhderivative(float *bh, float
             for (j = 0; j <= ny-1; j++)             for (j = 0; j <= ny-1; j++)
             {             {
                if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;                if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;
                  if ( (derx_bh[j * nx + i] + dery_bh[j * nx + i]) == 0) continue;
                  if isnan(bh[j * nx + i])      continue;
                  if isnan(bh[(j+1) * nx + i])  continue;
                  if isnan(bh[(j-1) * nx + i])  continue;
                  if isnan(bh[j * nx + i-1])    continue;
                  if isnan(bh[j * nx + i+1])    continue;
                  if isnan(bh_err[j * nx + i])  continue;
                if isnan(derx_bh[j * nx + i]) continue;                if isnan(derx_bh[j * nx + i]) continue;
                if isnan(dery_bh[j * nx + i]) continue;                if isnan(dery_bh[j * nx + i]) continue;
                sum += sqrt( derx_bh[j * nx + i]*derx_bh[j * nx + i]  + dery_bh[j * nx + i]*dery_bh[j * nx + i]  ); /* Units of Gauss */                sum += sqrt( derx_bh[j * nx + i]*derx_bh[j * nx + i]  + dery_bh[j * nx + i]*dery_bh[j * nx + i]  ); /* Units of Gauss */
                err += (2.0)*bh_err[j * nx + i]*bh_err[j * nx + i];                 err += (((bh[(j+1) * nx + i]-bh[(j-1) * nx + i])*(bh[(j+1) * nx + i]-bh[(j-1) * nx + i])) * (bh_err[(j+1) * nx + i]*bh_err[(j+1) * nx + i] + bh_err[(j-1) * nx + i]*bh_err[(j-1) * nx + i])) / (16.0*( derx_bh[j * nx + i]*derx_bh[j * nx + i]  + dery_bh[j * nx + i]*dery_bh[j * nx + i]  ))+
                         (((bh[j * nx + (i+1)]-bh[j * nx + (i-1)])*(bh[j * nx + (i+1)]-bh[j * nx + (i-1)])) * (bh_err[j * nx + (i+1)]*bh_err[j * nx + (i+1)] + bh_err[j * nx + (i-1)]*bh_err[j * nx + (i-1)])) / (16.0*( derx_bh[j * nx + i]*derx_bh[j * nx + i]  + dery_bh[j * nx + i]*dery_bh[j * nx + i]  )) ;
                count_mask++;                count_mask++;
             }             }
           }           }
Line 456  int computeBzderivative(float *bz, float
Line 497  int computeBzderivative(float *bz, float
           {           {
             for (j = 0; j <= ny-1; j++)             for (j = 0; j <= ny-1; j++)
             {             {
                // if ( (derx_bz[j * nx + i]-dery_bz[j * nx + i]) == 0) continue;  
                if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;                if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;
                  if ( (derx_bz[j * nx + i] + dery_bz[j * nx + i]) == 0) continue;
                if isnan(bz[j * nx + i]) continue;                if isnan(bz[j * nx + i]) continue;
                //if isnan(bz_err[j * nx + i]) continue;                 if isnan(bz[(j+1) * nx + i])  continue;
                  if isnan(bz[(j-1) * nx + i])  continue;
                  if isnan(bz[j * nx + i-1])    continue;
                  if isnan(bz[j * nx + i+1])    continue;
                  if isnan(bz_err[j * nx + i])  continue;
                if isnan(derx_bz[j * nx + i]) continue;                if isnan(derx_bz[j * nx + i]) continue;
                if isnan(dery_bz[j * nx + i]) continue;                if isnan(dery_bz[j * nx + i]) continue;
                sum += sqrt( derx_bz[j * nx + i]*derx_bz[j * nx + i]  + dery_bz[j * nx + i]*dery_bz[j * nx + i]  ); /* Units of Gauss */                sum += sqrt( derx_bz[j * nx + i]*derx_bz[j * nx + i]  + dery_bz[j * nx + i]*dery_bz[j * nx + i]  ); /* Units of Gauss */
                err += 2.0*bz_err[j * nx + i]*bz_err[j * nx + i];                 err += (((bz[(j+1) * nx + i]-bz[(j-1) * nx + i])*(bz[(j+1) * nx + i]-bz[(j-1) * nx + i])) * (bz_err[(j+1) * nx + i]*bz_err[(j+1) * nx + i] + bz_err[(j-1) * nx + i]*bz_err[(j-1) * nx + i])) /
                           (16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i]  + dery_bz[j * nx + i]*dery_bz[j * nx + i]  )) +
                         (((bz[j * nx + (i+1)]-bz[j * nx + (i-1)])*(bz[j * nx + (i+1)]-bz[j * nx + (i-1)])) * (bz_err[j * nx + (i+1)]*bz_err[j * nx + (i+1)] + bz_err[j * nx + (i-1)]*bz_err[j * nx + (i-1)])) /
                           (16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i]  + dery_bz[j * nx + i]*dery_bz[j * nx + i]  )) ;
                count_mask++;                count_mask++;
             }             }
           }           }
Line 595  int computeJz(float *bx_err, float *by_e
Line 643  int computeJz(float *bx_err, float *by_e
  
 /*===========================================*/ /*===========================================*/
  
   
 /* Example function 9:  Compute quantities on Jz array */ /* Example function 9:  Compute quantities on Jz array */
 // Compute mean and total current on Jz array. // Compute mean and total current on Jz array.
  
Line 634  int computeJzsmooth(float *bx, float *by
Line 681  int computeJzsmooth(float *bx, float *by
  
         /* Calculate mean vertical current density (mean_jz) and total unsigned vertical current (us_i) using smoothed Jz array and continue conditions above */         /* Calculate mean vertical current density (mean_jz) and total unsigned vertical current (us_i) using smoothed Jz array and continue conditions above */
         *mean_jz_ptr     = curl/(count_mask);        /* mean_jz gets populated as MEANJZD */         *mean_jz_ptr     = curl/(count_mask);        /* mean_jz gets populated as MEANJZD */
         *mean_jz_err_ptr = (sqrt(err))*fabs(((rsun_obs/rsun_ref)*(0.00010)*(1/MUNAUGHT)*(1000.))/(count_mask)); // error in the quantity MEANJZD          *mean_jz_err_ptr = (sqrt(err)/count_mask)*((1/cdelt1)*(rsun_obs/rsun_ref)*(0.00010)*(1/MUNAUGHT)*(1000.)); // error in the quantity MEANJZD
  
         *us_i_ptr        = (us_i);                   /* us_i gets populated as TOTUSJZ */         *us_i_ptr        = (us_i);                   /* us_i gets populated as TOTUSJZ */
         *us_i_err_ptr    = (sqrt(err))*fabs((cdelt1/1)*(rsun_ref/rsun_obs)*(0.00010)*(1/MUNAUGHT)); // error in the quantity TOTUSJZ          *us_i_err_ptr    = (sqrt(err))*((cdelt1/1)*(rsun_ref/rsun_obs)*(0.00010)*(1/MUNAUGHT)); // error in the quantity TOTUSJZ
  
         //printf("MEANJZD=%f\n",*mean_jz_ptr);         //printf("MEANJZD=%f\n",*mean_jz_ptr);
         //printf("MEANJZD_err=%f\n",*mean_jz_err_ptr);         //printf("MEANJZD_err=%f\n",*mean_jz_err_ptr);
Line 690  int computeAlpha(float *jz_err, float *b
Line 737  int computeAlpha(float *jz_err, float *b
                 if isnan(bz[j * nx + i])   continue;                 if isnan(bz[j * nx + i])   continue;
                 if (jz[j * nx + i] == 0.0) continue;                 if (jz[j * nx + i] == 0.0) continue;
                 if (bz[j * nx + i] == 0.0) continue;                 if (bz[j * nx + i] == 0.0) continue;
                 //if (jz_err[j * nx + i] > abs(jz[j * nx + i]) ) continue;  
                 //if (bz_err[j * nx + i] > abs(bz[j * nx + i]) ) continue;  
                 A += jz[j*nx+i]*bz[j*nx+i];                 A += jz[j*nx+i]*bz[j*nx+i];
                 B += bz[j*nx+i]*bz[j*nx+i];                 B += bz[j*nx+i]*bz[j*nx+i];
               }               }
Line 740  int computeHelicity(float *jz_err, float
Line 785  int computeHelicity(float *jz_err, float
         int count_mask = 0;         int count_mask = 0;
         double sum = 0.0;         double sum = 0.0;
         double sum2 = 0.0;         double sum2 = 0.0;
         double sum_err = 0.0;          double err     = 0.0;
  
         if (nx <= 0 || ny <= 0) return 1;         if (nx <= 0 || ny <= 0) return 1;
  
Line 751  int computeHelicity(float *jz_err, float
Line 796  int computeHelicity(float *jz_err, float
                   if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;                   if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;
                   if isnan(jz[j * nx + i]) continue;                   if isnan(jz[j * nx + i]) continue;
                   if isnan(bz[j * nx + i]) continue;                   if isnan(bz[j * nx + i]) continue;
                     if isnan(jz_err[j * nx + i]) continue;
                     if isnan(bz_err[j * nx + i]) continue;
                   if (bz[j * nx + i] == 0.0) continue;                   if (bz[j * nx + i] == 0.0) continue;
                   if (jz[j * nx + i] == 0.0) continue;                   if (jz[j * nx + i] == 0.0) continue;
                   sum     +=     (jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); // contributes to MEANJZH and ABSNJZH                   sum     +=     (jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); // contributes to MEANJZH and ABSNJZH
                   sum2    += fabs(jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); // contributes to TOTUSJH                   sum2    += fabs(jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); // contributes to TOTUSJH
                   sum_err += sqrt(((jz_err[j * nx + i]*jz_err[j * nx + i])/(jz[j * nx + i]*jz[j * nx + i])) + ((bz_err[j * nx + i]*bz_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i]))) * fabs(jz[j * nx + i]*bz[j * nx + i]*(1/cdelt1)*(rsun_obs/rsun_ref));                    err     += (jz_err[j * nx + i]*jz_err[j * nx + i]*bz[j * nx + i]*bz[j * nx + i]) + (bz_err[j * nx + i]*bz_err[j * nx + i]*jz[j * nx + i]*jz[j * nx + i]);
                   count_mask++;                   count_mask++;
                 }                 }
          }          }
Line 764  int computeHelicity(float *jz_err, float
Line 811  int computeHelicity(float *jz_err, float
         *total_us_ih_ptr      = sum2           ; /* Units are G^2 / m ; keyword is TOTUSJH */         *total_us_ih_ptr      = sum2           ; /* Units are G^2 / m ; keyword is TOTUSJH */
         *total_abs_ih_ptr     = fabs(sum)      ; /* Units are G^2 / m ; keyword is ABSNJZH */         *total_abs_ih_ptr     = fabs(sum)      ; /* Units are G^2 / m ; keyword is ABSNJZH */
  
         *mean_ih_err_ptr      = (sqrt(sum_err*sum_err)) / (count_mask*100.0)    ;  // error in the quantity MEANJZH          *mean_ih_err_ptr      = (sqrt(err)/count_mask)*(1/cdelt1)*(rsun_obs/rsun_ref) ; // error in the quantity MEANJZH
         *total_us_ih_err_ptr  = (sqrt(sum_err*sum_err)) / (100.0)               ;  // error in the quantity TOTUSJH          *total_us_ih_err_ptr  = (sqrt(err))*(1/cdelt1)*(rsun_obs/rsun_ref) ;            // error in the quantity TOTUSJH
         *total_abs_ih_err_ptr = (sqrt(sum_err*sum_err)) / (100.0)               ;  // error in the quantity ABSNJZH          *total_abs_ih_err_ptr = (sqrt(err))*(1/cdelt1)*(rsun_obs/rsun_ref) ;            // error in the quantity ABSNJZH
  
         //printf("MEANJZH=%f\n",*mean_ih_ptr);         //printf("MEANJZH=%f\n",*mean_ih_ptr);
         //printf("MEANJZH_err=%f\n",*mean_ih_err_ptr);         //printf("MEANJZH_err=%f\n",*mean_ih_err_ptr);
Line 867  int computeFreeEnergy(float *bx_err, flo
Line 914  int computeFreeEnergy(float *bx_err, flo
                  if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;                  if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;
                  if isnan(bx[j * nx + i]) continue;                  if isnan(bx[j * nx + i]) continue;
                  if isnan(by[j * nx + i]) continue;                  if isnan(by[j * nx + i]) continue;
                  sum  += ( ((bpx[j * nx + i] - bx[j * nx + i])*(bpx[j * nx + i] - bx[j * nx + i])) + ((bpy[j * nx + i] - by[j * nx + i])*(bpy[j * nx + i] - by[j * nx + i])) )*(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0);                   sum  += ( ((bx[j * nx + i] - bpx[j * nx + i])*(bx[j * nx + i] - bpx[j * nx + i])) + ((by[j * nx + i] - bpy[j * nx + i])*(by[j * nx + i] - bpy[j * nx + i])) )*(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0);
                  sum1 += ( ((bpx[j * nx + i] - bx[j * nx + i])*(bpx[j * nx + i] - bx[j * nx + i])) + ((bpy[j * nx + i] - by[j * nx + i])*(bpy[j * nx + i] - by[j * nx + i])) );                   sum1 += (  ((bx[j * nx + i] - bpx[j * nx + i])*(bx[j * nx + i] - bpx[j * nx + i])) + ((by[j * nx + i] - bpy[j * nx + i])*(by[j * nx + i] - bpy[j * nx + i])) );
                  err  += (4.0*bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i]) + (4.0*by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i]);                   err  += 4.0*(bx[j * nx + i] - bpx[j * nx + i])*(bx[j * nx + i] - bpx[j * nx + i])*(bx_err[j * nx + i]*bx_err[j * nx + i]) +
                            4.0*(by[j * nx + i] - bpy[j * nx + i])*(by[j * nx + i] - bpy[j * nx + i])*(by_err[j * nx + i]*by_err[j * nx + i]);
                  count_mask++;                  count_mask++;
               }               }
           }           }
  
         *meanpotptr      = (sum1/(8.*PI)) / (count_mask);     /* Units are ergs per cubic centimeter */          /* Units of meanpotptr are ergs per centimeter */
         *meanpot_err_ptr = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0) / (count_mask*8.*PI); // error in the quantity (sum)/(count_mask)          *meanpotptr      = (sum1) / (count_mask*8.*PI) ;     /* Units are ergs per cubic centimeter */
           *meanpot_err_ptr = (sqrt(err)) / (count_mask*8.*PI); // error in the quantity (sum)/(count_mask)
  
         /* Units of sum are ergs/cm^3, units of factor are cm^2/pix^2; therefore, units of totpotptr are ergs per centimeter */         /* Units of sum are ergs/cm^3, units of factor are cm^2/pix^2; therefore, units of totpotptr are ergs per centimeter */
         *totpotptr       = (sum)/(8.*PI);         *totpotptr       = (sum)/(8.*PI);
Line 893  int computeFreeEnergy(float *bx_err, flo
Line 942  int computeFreeEnergy(float *bx_err, flo
 /*===========================================*/ /*===========================================*/
 /* Example function 14:  Mean 3D shear angle, area with shear greater than 45, mean horizontal shear angle, area with horizontal shear angle greater than 45 */ /* Example function 14:  Mean 3D shear angle, area with shear greater than 45, mean horizontal shear angle, area with horizontal shear angle greater than 45 */
  
 int computeShearAngle(float *bx_err, float *by_err, float *bh_err, float *bx, float *by, float *bz, float *bpx, float *bpy, float *bpz, int *dims,  int computeShearAngle(float *bx_err, float *by_err, float *bz_err, float *bx, float *by, float *bz, float *bpx, float *bpy, float *bpz, int *dims,
                       float *meanshear_angleptr, float *meanshear_angle_err_ptr, float *area_w_shear_gt_45ptr, int *mask, int *bitmask)                       float *meanshear_angleptr, float *meanshear_angle_err_ptr, float *area_w_shear_gt_45ptr, int *mask, int *bitmask)
   
   
 { {
         int nx = dims[0];         int nx = dims[0];
         int ny = dims[1];         int ny = dims[1];
         int i = 0;         int i = 0;
         int j = 0;         int j = 0;
         int count_mask = 0;          float count_mask = 0;
           float count = 0;
         double dotproduct = 0.0;         double dotproduct = 0.0;
         double magnitude_potential = 0.0;         double magnitude_potential = 0.0;
         double magnitude_vector = 0.0;         double magnitude_vector = 0.0;
         double shear_angle = 0.0;         double shear_angle = 0.0;
           double denominator = 0.0;
           double term1 = 0.0;
           double term2 = 0.0;
           double term3 = 0.0;
           double sumsum = 0.0;
         double err = 0.0;         double err = 0.0;
         double sum = 0.0;          double part1 = 0.0;
         double count = 0.0;          double part2 = 0.0;
           double part3 = 0.0;
         *area_w_shear_gt_45ptr = 0.0;         *area_w_shear_gt_45ptr = 0.0;
         *meanshear_angleptr = 0.0;         *meanshear_angleptr = 0.0;
  
Line 924  int computeShearAngle(float *bx_err, flo
Line 982  int computeShearAngle(float *bx_err, flo
                  if isnan(bz[j * nx + i]) continue;                  if isnan(bz[j * nx + i]) continue;
                  if isnan(bx[j * nx + i]) continue;                  if isnan(bx[j * nx + i]) continue;
                  if isnan(by[j * nx + i]) continue;                  if isnan(by[j * nx + i]) continue;
                  /* For mean 3D shear angle, area with shear greater than 45*/                   if isnan(bx_err[j * nx + i]) continue;
                    if isnan(by_err[j * nx + i]) continue;
                    if isnan(bz_err[j * nx + i]) continue;
   
                    /* For mean 3D shear angle, percentage with shear greater than 45*/
                  dotproduct            = (bpx[j * nx + i])*(bx[j * nx + i]) + (bpy[j * nx + i])*(by[j * nx + i]) + (bpz[j * nx + i])*(bz[j * nx + i]);                  dotproduct            = (bpx[j * nx + i])*(bx[j * nx + i]) + (bpy[j * nx + i])*(by[j * nx + i]) + (bpz[j * nx + i])*(bz[j * nx + i]);
                  magnitude_potential   = sqrt( (bpx[j * nx + i]*bpx[j * nx + i]) + (bpy[j * nx + i]*bpy[j * nx + i]) + (bpz[j * nx + i]*bpz[j * nx + i]));                  magnitude_potential   = sqrt( (bpx[j * nx + i]*bpx[j * nx + i]) + (bpy[j * nx + i]*bpy[j * nx + i]) + (bpz[j * nx + i]*bpz[j * nx + i]));
                  magnitude_vector      = sqrt( (bx[j * nx + i]*bx[j * nx + i])   + (by[j * nx + i]*by[j * nx + i])   + (bz[j * nx + i]*bz[j * nx + i]) );                  magnitude_vector      = sqrt( (bx[j * nx + i]*bx[j * nx + i])   + (by[j * nx + i]*by[j * nx + i])   + (bz[j * nx + i]*bz[j * nx + i]) );
                    //printf("dotproduct=%f\n",dotproduct);
                    //printf("magnitude_potential=%f\n",magnitude_potential);
                    //printf("magnitude_vector=%f\n",magnitude_vector);
   
                  shear_angle           = acos(dotproduct/(magnitude_potential*magnitude_vector))*(180./PI);                  shear_angle           = acos(dotproduct/(magnitude_potential*magnitude_vector))*(180./PI);
                    sumsum                  += shear_angle;
                    //printf("shear_angle=%f\n",shear_angle);
                  count ++;                  count ++;
                  sum += shear_angle ;  
                  err += -(1./(1.- sqrt(bx_err[j * nx + i]*bx_err[j * nx + i]+by_err[j * nx + i]*by_err[j * nx + i]+bh_err[j * nx + i]*bh_err[j * nx + i])));  
                  if (shear_angle > 45) count_mask ++;                  if (shear_angle > 45) count_mask ++;
   
                    // For the error analysis
   
                    term1 = bx[j * nx + i]*by[j * nx + i]*bpy[j * nx + i] - by[j * nx + i]*by[j * nx + i]*bpx[j * nx + i] + bz[j * nx + i]*bx[j * nx + i]*bpz[j * nx + i] - bz[j * nx + i]*bz[j * nx + i]*bpx[j * nx + i];
                    term2 = bx[j * nx + i]*bx[j * nx + i]*bpy[j * nx + i] - bx[j * nx + i]*by[j * nx + i]*bpx[j * nx + i] + bx[j * nx + i]*bz[j * nx + i]*bpy[j * nx + i] - bz[j * nx + i]*by[j * nx + i]*bpz[j * nx + i];
                    term3 = bx[j * nx + i]*bx[j * nx + i]*bpz[j * nx + i] - bx[j * nx + i]*bz[j * nx + i]*bpx[j * nx + i] + by[j * nx + i]*by[j * nx + i]*bpz[j * nx + i] - by[j * nx + i]*bz[j * nx + i]*bpy[j * nx + i];
   
                    part1 = bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] + bz[j * nx + i]*bz[j * nx + i];
                    part2 = bpx[j * nx + i]*bpx[j * nx + i] + bpy[j * nx + i]*bpy[j * nx + i] + bpz[j * nx + i]*bpz[j * nx + i];
                    part3 = bx[j * nx + i]*bpx[j * nx + i] + by[j * nx + i]*bpy[j * nx + i] + bz[j * nx + i]*bpz[j * nx + i];
   
                    // denominator is squared
                    denominator = part1*part1*part1*part2*(1.0-((part3*part3)/(part1*part2)));
   
                    err = (term1*term1*bx_err[j * nx + i]*bx_err[j * nx + i])/(denominator) +
                          (term1*term1*bx_err[j * nx + i]*bx_err[j * nx + i])/(denominator) +
                          (term1*term1*bx_err[j * nx + i]*bx_err[j * nx + i])/(denominator) ;
   
               }               }
           }           }
   
         /* For mean 3D shear angle, area with shear greater than 45*/         /* For mean 3D shear angle, area with shear greater than 45*/
         *meanshear_angleptr = (sum)/(count);                 /* Units are degrees */              *meanshear_angleptr = (sumsum)/(count);                 /* Units are degrees */
         *meanshear_angle_err_ptr = (sqrt(err*err))/(count);  // error in the quantity (sum)/(count_mask)          *meanshear_angle_err_ptr = (sqrt(err)/count_mask)*(180./PI);
         *area_w_shear_gt_45ptr   = (count_mask/(count))*(100.0);/* The area here is a fractional area -- the % of the total area */  
           /* The area here is a fractional area -- the % of the total area. This has no error associated with it. */
           *area_w_shear_gt_45ptr   = (count_mask/(count))*(100.0);
  
         //printf("MEANSHR=%f\n",*meanshear_angleptr);         //printf("MEANSHR=%f\n",*meanshear_angleptr);
         //printf("MEANSHR_err=%f\n",*meanshear_angle_err_ptr);         //printf("MEANSHR_err=%f\n",*meanshear_angle_err_ptr);
           //printf("SHRGT45=%f\n",*area_w_shear_gt_45ptr);
  
         return 0;         return 0;
 } }


Legend:
Removed from v.1.19  
changed lines
  Added in v.1.26

Karen Tian
Powered by
ViewCVS 0.9.4