(file) Return to sw_functions.c CVS log (file) (dir) Up to [Development] / JSOC / proj / sharp / apps

Diff for /JSOC/proj/sharp/apps/sw_functions.c between version 1.20 and 1.31

version 1.20, 2013/11/02 19:53:05 version 1.31, 2014/06/05 21:27:04
Line 17 
Line 17 
     MEANPOT Mean photospheric excess magnetic energy density in ergs per cubic centimeter     MEANPOT Mean photospheric excess magnetic energy density in ergs per cubic centimeter
     TOTPOT Total photospheric magnetic energy density in ergs per cubic centimeter     TOTPOT Total photospheric magnetic energy density in ergs per cubic centimeter
     MEANSHR Mean shear angle (measured using Btotal) in degrees     MEANSHR Mean shear angle (measured using Btotal) in degrees
    R_VALUE Karel Schrijver's R parameter
  
    The indices are calculated on the pixels in which the conf_disambig segment is greater than 70 and    The indices are calculated on the pixels in which the conf_disambig segment is greater than 70 and
    pixels in which the bitmap segment is greater than 30. These ranges are selected because the CCD    pixels in which the bitmap segment is greater than 30. These ranges are selected because the CCD
Line 309  int computeBtotalderivative(float *bt, i
Line 310  int computeBtotalderivative(float *bt, i
             for (j = 1; j <= ny-2; j++)             for (j = 1; j <= ny-2; j++)
             {             {
                if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;                if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;
                if isnan(derx_bt[j * nx + i]) continue;              if ( (derx_bt[j * nx + i] + dery_bt[j * nx + i]) == 0) continue;
                if isnan(dery_bt[j * nx + i]) continue;  
                if isnan(bt[j * nx + i])      continue;                if isnan(bt[j * nx + i])      continue;
               if isnan(bt[(j+1) * nx + i])  continue;
               if isnan(bt[(j-1) * nx + i])  continue;
               if isnan(bt[j * nx + i-1])    continue;
               if isnan(bt[j * nx + i+1])    continue;
                if isnan(bt_err[j * nx + i])  continue;                if isnan(bt_err[j * nx + i])  continue;
               if isnan(derx_bt[j * nx + i]) continue;
               if isnan(dery_bt[j * nx + i]) continue;
                sum += sqrt( derx_bt[j * nx + i]*derx_bt[j * nx + i]  + dery_bt[j * nx + i]*dery_bt[j * nx + i]  ); /* Units of Gauss */                sum += sqrt( derx_bt[j * nx + i]*derx_bt[j * nx + i]  + dery_bt[j * nx + i]*dery_bt[j * nx + i]  ); /* Units of Gauss */
                err += (((bt[(j+1) * nx + i]-bt[(j-1) * nx + i])*(bt[(j+1) * nx + i]-bt[(j-1) * nx + i])) * (bt_err[(j+1) * nx + i]*bt_err[(j+1) * nx + i] + bt_err[(j-1) * nx + i]*bt_err[(j-1) * nx + i])) / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i]  + dery_bt[j * nx + i]*dery_bt[j * nx + i]  ))+                err += (((bt[(j+1) * nx + i]-bt[(j-1) * nx + i])*(bt[(j+1) * nx + i]-bt[(j-1) * nx + i])) * (bt_err[(j+1) * nx + i]*bt_err[(j+1) * nx + i] + bt_err[(j-1) * nx + i]*bt_err[(j-1) * nx + i])) / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i]  + dery_bt[j * nx + i]*dery_bt[j * nx + i]  ))+
                       (((bt[j * nx + (i+1)]-bt[j * nx + (i-1)])*(bt[j * nx + (i+1)]-bt[j * nx + (i-1)])) * (bt_err[j * nx + (i+1)]*bt_err[j * nx + (i+1)] + bt_err[j * nx + (i-1)]*bt_err[j * nx + (i-1)])) / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i]  + dery_bt[j * nx + i]*dery_bt[j * nx + i]  )) ;                       (((bt[j * nx + (i+1)]-bt[j * nx + (i-1)])*(bt[j * nx + (i+1)]-bt[j * nx + (i-1)])) * (bt_err[j * nx + (i+1)]*bt_err[j * nx + (i+1)] + bt_err[j * nx + (i-1)]*bt_err[j * nx + (i-1)])) / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i]  + dery_bt[j * nx + i]*dery_bt[j * nx + i]  )) ;
Line 396  int computeBhderivative(float *bh, float
Line 402  int computeBhderivative(float *bh, float
             for (j = 0; j <= ny-1; j++)             for (j = 0; j <= ny-1; j++)
             {             {
                if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;                if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;
               if ( (derx_bh[j * nx + i] + dery_bh[j * nx + i]) == 0) continue;
               if isnan(bh[j * nx + i])      continue;
               if isnan(bh[(j+1) * nx + i])  continue;
               if isnan(bh[(j-1) * nx + i])  continue;
               if isnan(bh[j * nx + i-1])    continue;
               if isnan(bh[j * nx + i+1])    continue;
               if isnan(bh_err[j * nx + i])  continue;
                if isnan(derx_bh[j * nx + i]) continue;                if isnan(derx_bh[j * nx + i]) continue;
                if isnan(dery_bh[j * nx + i]) continue;                if isnan(dery_bh[j * nx + i]) continue;
                sum += sqrt( derx_bh[j * nx + i]*derx_bh[j * nx + i]  + dery_bh[j * nx + i]*dery_bh[j * nx + i]  ); /* Units of Gauss */                sum += sqrt( derx_bh[j * nx + i]*derx_bh[j * nx + i]  + dery_bh[j * nx + i]*dery_bh[j * nx + i]  ); /* Units of Gauss */
Line 485  int computeBzderivative(float *bz, float
Line 498  int computeBzderivative(float *bz, float
           {           {
             for (j = 0; j <= ny-1; j++)             for (j = 0; j <= ny-1; j++)
             {             {
                // if ( (derx_bz[j * nx + i]-dery_bz[j * nx + i]) == 0) continue;  
                if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;                if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue;
               if ( (derx_bz[j * nx + i] + dery_bz[j * nx + i]) == 0) continue;
                if isnan(bz[j * nx + i]) continue;                if isnan(bz[j * nx + i]) continue;
                //if isnan(bz_err[j * nx + i]) continue;              if isnan(bz[(j+1) * nx + i])  continue;
               if isnan(bz[(j-1) * nx + i])  continue;
               if isnan(bz[j * nx + i-1])    continue;
               if isnan(bz[j * nx + i+1])    continue;
               if isnan(bz_err[j * nx + i])  continue;
                if isnan(derx_bz[j * nx + i]) continue;                if isnan(derx_bz[j * nx + i]) continue;
                if isnan(dery_bz[j * nx + i]) continue;                if isnan(dery_bz[j * nx + i]) continue;
                sum += sqrt( derx_bz[j * nx + i]*derx_bz[j * nx + i]  + dery_bz[j * nx + i]*dery_bz[j * nx + i]  ); /* Units of Gauss */                sum += sqrt( derx_bz[j * nx + i]*derx_bz[j * nx + i]  + dery_bz[j * nx + i]*dery_bz[j * nx + i]  ); /* Units of Gauss */
                err += (((bz[(j+1) * nx + i]-bz[(j-1) * nx + i])*(bz[(j+1) * nx + i]-bz[(j-1) * nx + i])) * (bz_err[(j+1) * nx + i]*bz_err[(j+1) * nx + i] + bz_err[(j-1) * nx + i]*bz_err[(j-1) * nx + i])) / (16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i]  + dery_bz[j * nx + i]*dery_bz[j * nx + i]  ))+              err += (((bz[(j+1) * nx + i]-bz[(j-1) * nx + i])*(bz[(j+1) * nx + i]-bz[(j-1) * nx + i])) * (bz_err[(j+1) * nx + i]*bz_err[(j+1) * nx + i] + bz_err[(j-1) * nx + i]*bz_err[(j-1) * nx + i])) /
                       (((bz[j * nx + (i+1)]-bz[j * nx + (i-1)])*(bz[j * nx + (i+1)]-bz[j * nx + (i-1)])) * (bz_err[j * nx + (i+1)]*bz_err[j * nx + (i+1)] + bz_err[j * nx + (i-1)]*bz_err[j * nx + (i-1)])) / (16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i]  + dery_bz[j * nx + i]*dery_bz[j * nx + i]  )) ;              (16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i]  + dery_bz[j * nx + i]*dery_bz[j * nx + i]  )) +
               (((bz[j * nx + (i+1)]-bz[j * nx + (i-1)])*(bz[j * nx + (i+1)]-bz[j * nx + (i-1)])) * (bz_err[j * nx + (i+1)]*bz_err[j * nx + (i+1)] + bz_err[j * nx + (i-1)]*bz_err[j * nx + (i-1)])) /
               (16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i]  + dery_bz[j * nx + i]*dery_bz[j * nx + i]  )) ;
                count_mask++;                count_mask++;
             }             }
           }           }
Line 797  int computeHelicity(float *jz_err, float
Line 816  int computeHelicity(float *jz_err, float
         *total_us_ih_err_ptr  = (sqrt(err))*(1/cdelt1)*(rsun_obs/rsun_ref) ;            // error in the quantity TOTUSJH         *total_us_ih_err_ptr  = (sqrt(err))*(1/cdelt1)*(rsun_obs/rsun_ref) ;            // error in the quantity TOTUSJH
         *total_abs_ih_err_ptr = (sqrt(err))*(1/cdelt1)*(rsun_obs/rsun_ref) ;            // error in the quantity ABSNJZH         *total_abs_ih_err_ptr = (sqrt(err))*(1/cdelt1)*(rsun_obs/rsun_ref) ;            // error in the quantity ABSNJZH
  
         printf("MEANJZH=%f\n",*mean_ih_ptr);      //printf("MEANJZH=%f\n",*mean_ih_ptr);
         printf("MEANJZH_err=%f\n",*mean_ih_err_ptr);      //printf("MEANJZH_err=%f\n",*mean_ih_err_ptr);
  
         printf("TOTUSJH=%f\n",*total_us_ih_ptr);      //printf("TOTUSJH=%f\n",*total_us_ih_ptr);
         printf("TOTUSJH_err=%f\n",*total_us_ih_err_ptr);      //printf("TOTUSJH_err=%f\n",*total_us_ih_err_ptr);
  
         printf("ABSNJZH=%f\n",*total_abs_ih_ptr);      //printf("ABSNJZH=%f\n",*total_abs_ih_ptr);
         printf("ABSNJZH_err=%f\n",*total_abs_ih_err_ptr);      //printf("ABSNJZH_err=%f\n",*total_abs_ih_err_ptr);
  
         return 0;         return 0;
 } }
Line 926  int computeFreeEnergy(float *bx_err, flo
Line 945  int computeFreeEnergy(float *bx_err, flo
  
 int computeShearAngle(float *bx_err, float *by_err, float *bz_err, float *bx, float *by, float *bz, float *bpx, float *bpy, float *bpz, int *dims, int computeShearAngle(float *bx_err, float *by_err, float *bz_err, float *bx, float *by, float *bz, float *bpx, float *bpy, float *bpz, int *dims,
                       float *meanshear_angleptr, float *meanshear_angle_err_ptr, float *area_w_shear_gt_45ptr, int *mask, int *bitmask)                       float *meanshear_angleptr, float *meanshear_angle_err_ptr, float *area_w_shear_gt_45ptr, int *mask, int *bitmask)
   
   
 { {
         int nx = dims[0];         int nx = dims[0];
         int ny = dims[1];         int ny = dims[1];
         int i = 0;         int i = 0;
         int j = 0;         int j = 0;
         int count_mask = 0;      float count_mask = 0;
       float count = 0;
         double dotproduct = 0.0;         double dotproduct = 0.0;
         double magnitude_potential = 0.0;         double magnitude_potential = 0.0;
         double magnitude_vector = 0.0;         double magnitude_vector = 0.0;
         double shear_angle = 0.0;         double shear_angle = 0.0;
         double denominator = 0.0;         double denominator = 0.0;
         double err = 0.0;  
         double sum = 0.0;  
         double count = 0.0;  
         double term1 = 0.0;         double term1 = 0.0;
         double term2 = 0.0;         double term2 = 0.0;
         double term3 = 0.0;         double term3 = 0.0;
       double sumsum = 0.0;
       double err = 0.0;
       double part1 = 0.0;
       double part2 = 0.0;
       double part3 = 0.0;
         *area_w_shear_gt_45ptr = 0.0;         *area_w_shear_gt_45ptr = 0.0;
         *meanshear_angleptr = 0.0;         *meanshear_angleptr = 0.0;
  
Line 959  int computeShearAngle(float *bx_err, flo
Line 983  int computeShearAngle(float *bx_err, flo
                  if isnan(bz[j * nx + i]) continue;                  if isnan(bz[j * nx + i]) continue;
                  if isnan(bx[j * nx + i]) continue;                  if isnan(bx[j * nx + i]) continue;
                  if isnan(by[j * nx + i]) continue;                  if isnan(by[j * nx + i]) continue;
               if isnan(bx_err[j * nx + i]) continue;
               if isnan(by_err[j * nx + i]) continue;
               if isnan(bz_err[j * nx + i]) continue;
   
                  /* For mean 3D shear angle, percentage with shear greater than 45*/                  /* For mean 3D shear angle, percentage with shear greater than 45*/
                  dotproduct            = (bpx[j * nx + i])*(bx[j * nx + i]) + (bpy[j * nx + i])*(by[j * nx + i]) + (bpz[j * nx + i])*(bz[j * nx + i]);                  dotproduct            = (bpx[j * nx + i])*(bx[j * nx + i]) + (bpy[j * nx + i])*(by[j * nx + i]) + (bpz[j * nx + i])*(bz[j * nx + i]);
                  magnitude_potential   = sqrt( (bpx[j * nx + i]*bpx[j * nx + i]) + (bpy[j * nx + i]*bpy[j * nx + i]) + (bpz[j * nx + i]*bpz[j * nx + i]));                  magnitude_potential   = sqrt( (bpx[j * nx + i]*bpx[j * nx + i]) + (bpy[j * nx + i]*bpy[j * nx + i]) + (bpz[j * nx + i]*bpz[j * nx + i]));
                  magnitude_vector      = sqrt( (bx[j * nx + i]*bx[j * nx + i])   + (by[j * nx + i]*by[j * nx + i])   + (bz[j * nx + i]*bz[j * nx + i]) );                  magnitude_vector      = sqrt( (bx[j * nx + i]*bx[j * nx + i])   + (by[j * nx + i]*by[j * nx + i])   + (bz[j * nx + i]*bz[j * nx + i]) );
               //printf("dotproduct=%f\n",dotproduct);
               //printf("magnitude_potential=%f\n",magnitude_potential);
               //printf("magnitude_vector=%f\n",magnitude_vector);
   
                  shear_angle           = acos(dotproduct/(magnitude_potential*magnitude_vector))*(180./PI);                  shear_angle           = acos(dotproduct/(magnitude_potential*magnitude_vector))*(180./PI);
                  sum                   += shear_angle ;              sumsum                  += shear_angle;
               //printf("shear_angle=%f\n",shear_angle);
                  count ++;                  count ++;
   
                  if (shear_angle > 45) count_mask ++;                  if (shear_angle > 45) count_mask ++;
  
                  /* For the error analysis*/              // For the error analysis
                  // terms 1,2, and 3 are not squared  
                  term1 = -by[j * nx + i]*by[j * nx + i]*bpx[j * nx + i] + bx[j * nx + i]*by[j * nx + i]*bpy[j * nx + i] + bz[j * nx + i]*(bx[j * nx + i]*bpz[j * nx + i] - bz[j * nx + i]*bpx[j * nx + i]);              term1 = bx[j * nx + i]*by[j * nx + i]*bpy[j * nx + i] - by[j * nx + i]*by[j * nx + i]*bpx[j * nx + i] + bz[j * nx + i]*bx[j * nx + i]*bpz[j * nx + i] - bz[j * nx + i]*bz[j * nx + i]*bpx[j * nx + i];
                  term2 =  bx[j * nx + i]*bx[j * nx + i]*bpy[j * nx + i] - bx[j * nx + i]*by[j * nx + i]*bpx[j * nx + i] + bz[j * nx + i]*(bz[j * nx + i]*bpy[j * nx + i] - by[j * nx + i]*bpz[j * nx + i]);              term2 = bx[j * nx + i]*bx[j * nx + i]*bpy[j * nx + i] - bx[j * nx + i]*by[j * nx + i]*bpx[j * nx + i] + bx[j * nx + i]*bz[j * nx + i]*bpy[j * nx + i] - bz[j * nx + i]*by[j * nx + i]*bpz[j * nx + i];
                  term3 =  bx[j * nx + i]*bx[j * nx + i]*bpz[j * nx + i] - bx[j * nx + i]*bz[j * nx + i]*bpx[j * nx + i] + by[j * nx + i]*(by[j * nx + i]*bpz[j * nx + i] - bz[j * nx + i]*bpy[j * nx + i]);              term3 = bx[j * nx + i]*bx[j * nx + i]*bpz[j * nx + i] - bx[j * nx + i]*bz[j * nx + i]*bpx[j * nx + i] + by[j * nx + i]*by[j * nx + i]*bpz[j * nx + i] - by[j * nx + i]*bz[j * nx + i]*bpy[j * nx + i];
   
               part1 = bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] + bz[j * nx + i]*bz[j * nx + i];
               part2 = bpx[j * nx + i]*bpx[j * nx + i] + bpy[j * nx + i]*bpy[j * nx + i] + bpz[j * nx + i]*bpz[j * nx + i];
               part3 = bx[j * nx + i]*bpx[j * nx + i] + by[j * nx + i]*bpy[j * nx + i] + bz[j * nx + i]*bpz[j * nx + i];
  
                  // denominator is squared                  // denominator is squared
                  denominator = (bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]) *              denominator = part1*part1*part1*part2*(1.0-((part3*part3)/(part1*part2)));
                                (bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]) *  
                                (bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]) *              err = (term1*term1*bx_err[j * nx + i]*bx_err[j * nx + i])/(denominator) +
                                (bpx[j * nx + i]*bpx[j * nx + i] + bpy[j * nx + i]*bpy[j * nx + i] * bpz[j * nx + i]*bpz[j * nx + i]) *              (term1*term1*bx_err[j * nx + i]*bx_err[j * nx + i])/(denominator) +
                                ( 1-( ((bx[j * nx + i]*bpx[j * nx + i] + by[j * nx + i]*bpy[j * nx + i] + bz[j * nx + i]*bpz[j * nx + i])  *              (term1*term1*bx_err[j * nx + i]*bx_err[j * nx + i])/(denominator) ;
                                       (bx[j * nx + i]*bpx[j * nx + i] + by[j * nx + i]*bpy[j * nx + i] + bz[j * nx + i]*bpz[j * nx + i])) /  
                                      ((bx[j * nx + i]*bx[j * nx + i]  + by[j * nx + i]*by[j * nx + i]  + bz[j * nx + i]*bz[j * nx + i]) * (bpx[j * nx + i]*bpx[j * nx + i] + bpy[j * nx + i]*bpy[j * nx + i] + bpz[j * nx + i]*bpz[j * nx + i]))  ));  
   
                  err += ((term1*term1*bx_err[j * nx + i]*bx_err[j * nx + i])/(denominator)) +  
                         ((term2*term2*by_err[j * nx + i]*by_err[j * nx + i])/(denominator)) +  
                         ((term3*term3*bz_err[j * nx + i]*bz_err[j * nx + i])/(denominator)) ;  
               }               }
           }           }
   
         /* For mean 3D shear angle, area with shear greater than 45*/         /* For mean 3D shear angle, area with shear greater than 45*/
         *meanshear_angleptr = (sum)/(count);                 /* Units are degrees */      *meanshear_angleptr = (sumsum)/(count);                 /* Units are degrees */
         *meanshear_angle_err_ptr = ((sqrt(err))/(count))*(180./PI);      *meanshear_angle_err_ptr = (sqrt(err)/count_mask)*(180./PI);
  
         /* The area here is a fractional area -- the % of the total area. This has no error associated with it. */         /* The area here is a fractional area -- the % of the total area. This has no error associated with it. */
         *area_w_shear_gt_45ptr   = (count_mask/(count))*(100.0);         *area_w_shear_gt_45ptr   = (count_mask/(count))*(100.0);
  
         printf("MEANSHR=%f\n",*meanshear_angleptr);      //printf("MEANSHR=%f\n",*meanshear_angleptr);
         printf("MEANSHR_err=%f\n",*meanshear_angle_err_ptr);      //printf("MEANSHR_err=%f\n",*meanshear_angle_err_ptr);
       //printf("SHRGT45=%f\n",*area_w_shear_gt_45ptr);
   
           return 0;
   }
   
   /*===========================================*/
   /* Example function 15: R parameter as defined in Schrijver, 2007 */
   //
   // Note that there is a restriction on the function fsample()
   // If the following occurs:
   //      nx_out > floor((ny_in-1)/scale + 1)
   //      ny_out > floor((ny_in-1)/scale + 1),
   // where n*_out are the dimensions of the output array and n*_in
   // are the dimensions of the input array, fsample() will usually result
   // in a segfault (though not always, depending on how the segfault was accessed.)
   
   int computeR(float *bz_err, float *los, int *dims, float *Rparam, float cdelt1,
                float *rim, float *p1p0, float *p1n0, float *p1p, float *p1n, float *p1,
                float *pmap, int nx1, int ny1,
                int scale, float *p1pad, int nxp, int nyp, float *pmapn)
   
   {
       int nx = dims[0];
       int ny = dims[1];
       int i = 0;
       int j = 0;
       int index, index1;
       double sum = 0.0;
       double err = 0.0;
       *Rparam = 0.0;
       struct fresize_struct fresboxcar, fresgauss;
       struct fint_struct fints;
       float sigma = 10.0/2.3548;
   
       // set up convolution kernels
       init_fresize_boxcar(&fresboxcar,1,1);
       init_fresize_gaussian(&fresgauss,sigma,20,1);
   
       // =============== [STEP 1] ===============
       // bin the line-of-sight magnetogram down by a factor of scale
       fsample(los, rim, nx, ny, nx, nx1, ny1, nx1, scale, 0, 0, 0.0);
   
       // =============== [STEP 2] ===============
       // identify positive and negative pixels greater than +/- 150 gauss
       // and label those pixels with a 1.0 in arrays p1p0 and p1n0
       for (i = 0; i < nx1; i++)
       {
           for (j = 0; j < ny1; j++)
           {
               index = j * nx1 + i;
               if (rim[index] > 150)
                   p1p0[index]=1.0;
               else
                   p1p0[index]=0.0;
               if (rim[index] < -150)
                   p1n0[index]=1.0;
               else
                   p1n0[index]=0.0;
           }
       }
   
       // =============== [STEP 3] ===============
       // smooth each of the negative and positive pixel bitmaps
       fresize(&fresboxcar, p1p0, p1p, nx1, ny1, nx1, nx1, ny1, nx1, 0, 0, 0.0);
       fresize(&fresboxcar, p1n0, p1n, nx1, ny1, nx1, nx1, ny1, nx1, 0, 0, 0.0);
   
       // =============== [STEP 4] ===============
       // find the pixels for which p1p and p1n are both equal to 1.
       // this defines the polarity inversion line
       for (i = 0; i < nx1; i++)
       {
           for (j = 0; j < ny1; j++)
           {
               index = j * nx1 + i;
               if ((p1p[index] > 0.0) && (p1n[index] > 0.0))
                   p1[index]=1.0;
               else
                   p1[index]=0.0;
           }
       }
   
       // pad p1 with zeroes so that the gaussian colvolution in step 5
       // does not cut off data within hwidth of the edge
   
       // step i: zero p1pad
       for (i = 0; i < nxp; i++)
       {
           for (j = 0; j < nyp; j++)
           {
               index = j * nxp + i;
               p1pad[index]=0.0;
           }
       }
   
       // step ii: place p1 at the center of p1pad
       for (i = 0; i < nx1; i++)
       {
          for (j = 0; j < ny1; j++)
          {
               index  = j * nx1 + i;
               index1 = (j+20) * nxp + (i+20);
               p1pad[index1]=p1[index];
           }
       }
   
       // =============== [STEP 5] ===============
       // convolve the polarity inversion line map with a gaussian
       // to identify the region near the plarity inversion line
       // the resultant array is called pmap
       fresize(&fresgauss, p1pad, pmap, nxp, nyp, nxp, nxp, nyp, nxp, 0, 0, 0.0);
   
   
      // select out the nx1 x ny1 non-padded array  within pmap
       for (i = 0; i < nx1; i++)
       {
          for (j = 0; j < ny1; j++)
          {
               index  = j * nx1 + i;
               index1 = (j+20) * nxp + (i+20);
               pmapn[index]=pmap[index1];
           }
       }
   
       // =============== [STEP 6] ===============
       // the R parameter is calculated
       for (i = 0; i < nx1; i++)
       {
           for (j = 0; j < ny1; j++)
           {
               index = j * nx1 + i;
               sum += pmapn[index]*abs(rim[index]);
           }
       }
   
       if (sum < 1.0)
           *Rparam = 0.0;
       else
           *Rparam = log10(sum);
   
       free_fresize(&fresboxcar);
       free_fresize(&fresgauss);
  
         return 0;         return 0;
   
 } }
  
   /*===========================================*/
   /* Example function 16: Lorentz force as defined in Fisher, 2012 */
   //
   // This calculation is adapted from Xudong's code
   // at /proj/cgem/lorentz/apps/lorentz.c
   
   int computeLorentz(float *bx,  float *by, float *bz, float *fx, float *fy, float *fz, int *dims,
                      float *totfx_ptr, float *totfy_ptr, float *totfz_ptr, float *totbsq_ptr,
                      float *epsx_ptr, float *epsy_ptr, float *epsz_ptr, int *mask, int *bitmask,
                      float cdelt1, double rsun_ref, double rsun_obs)
   
   {
   
       int nx = dims[0];
       int ny = dims[1];
       int nxny = nx*ny;
       int j = 0;
       int index;
       double totfx = 0, totfy = 0, totfz = 0;
       double bsq = 0, totbsq = 0;
       double epsx = 0, epsy = 0, epsz = 0;
       double area = cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0;
       double k_h = -1.0 * area / (4. * PI) / 1.0e20;
       double k_z = area / (8. * PI) / 1.0e20;
   
       /* Multiplier */
       float vectorMulti[] = {1.,-1.,1.};
   
       if (nx <= 0 || ny <= 0) return 1;
   
       for (int i = 0; i < nxny; i++)
       {
          if ( mask[i] < 70 || bitmask[i] < 30 ) continue;
          if isnan(bx[i]) continue;
          if isnan(by[i]) continue;
          if isnan(bz[i]) continue;
          fx[i]  = (bx[i] * vectorMulti[0]) * (bz[i] * vectorMulti[2]) * k_h;
          fy[i]  = (by[i] * vectorMulti[1]) * (bz[i] * vectorMulti[2]) * k_h;
          fz[i]  = (bx[i] * bx[i] + by[i] * by[i] - bz[i] * bz[i]) * k_z;
          bsq    = bx[i] * bx[i] + by[i] * by[i] + bz[i] * bz[i];
          totfx  += fx[i]; totfy += fy[i]; totfz += fz[i];
          totbsq += bsq;
       }
   
       *totfx_ptr  = totfx;
       *totfy_ptr  = totfy;
       *totfz_ptr  = totfz;
       *totbsq_ptr = totbsq;
       *epsx_ptr   = (totfx / k_h) / totbsq;
       *epsy_ptr   = (totfy / k_h) / totbsq;
       *epsz_ptr   = (totfz / k_z) / totbsq;
   
       return 0;
   
   }
  
 /*==================KEIJI'S CODE =========================*/ /*==================KEIJI'S CODE =========================*/
  
Line 1121  void greenpot(float *bx, float *by, floa
Line 1350  void greenpot(float *bx, float *by, floa
  
 char *sw_functions_version() // Returns CVS version of sw_functions.c char *sw_functions_version() // Returns CVS version of sw_functions.c
 { {
   return strdup("$Id$");      return strdup("$Id");
 } }
  
 /* ---------------- end of this file ----------------*/ /* ---------------- end of this file ----------------*/


Legend:
Removed from v.1.20  
changed lines
  Added in v.1.31

Karen Tian
Powered by
ViewCVS 0.9.4