version 1.20, 2013/11/02 19:53:05
|
version 1.31, 2014/06/05 21:27:04
|
|
|
MEANPOT Mean photospheric excess magnetic energy density in ergs per cubic centimeter | MEANPOT Mean photospheric excess magnetic energy density in ergs per cubic centimeter |
TOTPOT Total photospheric magnetic energy density in ergs per cubic centimeter | TOTPOT Total photospheric magnetic energy density in ergs per cubic centimeter |
MEANSHR Mean shear angle (measured using Btotal) in degrees | MEANSHR Mean shear angle (measured using Btotal) in degrees |
|
R_VALUE Karel Schrijver's R parameter |
| |
The indices are calculated on the pixels in which the conf_disambig segment is greater than 70 and | The indices are calculated on the pixels in which the conf_disambig segment is greater than 70 and |
pixels in which the bitmap segment is greater than 30. These ranges are selected because the CCD | pixels in which the bitmap segment is greater than 30. These ranges are selected because the CCD |
Line 309 int computeBtotalderivative(float *bt, i |
|
Line 310 int computeBtotalderivative(float *bt, i |
|
for (j = 1; j <= ny-2; j++) | for (j = 1; j <= ny-2; j++) |
{ | { |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
if isnan(derx_bt[j * nx + i]) continue; |
if ( (derx_bt[j * nx + i] + dery_bt[j * nx + i]) == 0) continue; |
if isnan(dery_bt[j * nx + i]) continue; |
|
if isnan(bt[j * nx + i]) continue; | if isnan(bt[j * nx + i]) continue; |
|
if isnan(bt[(j+1) * nx + i]) continue; |
|
if isnan(bt[(j-1) * nx + i]) continue; |
|
if isnan(bt[j * nx + i-1]) continue; |
|
if isnan(bt[j * nx + i+1]) continue; |
if isnan(bt_err[j * nx + i]) continue; | if isnan(bt_err[j * nx + i]) continue; |
|
if isnan(derx_bt[j * nx + i]) continue; |
|
if isnan(dery_bt[j * nx + i]) continue; |
sum += sqrt( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] ); /* Units of Gauss */ | sum += sqrt( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] ); /* Units of Gauss */ |
err += (((bt[(j+1) * nx + i]-bt[(j-1) * nx + i])*(bt[(j+1) * nx + i]-bt[(j-1) * nx + i])) * (bt_err[(j+1) * nx + i]*bt_err[(j+1) * nx + i] + bt_err[(j-1) * nx + i]*bt_err[(j-1) * nx + i])) / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] ))+ | err += (((bt[(j+1) * nx + i]-bt[(j-1) * nx + i])*(bt[(j+1) * nx + i]-bt[(j-1) * nx + i])) * (bt_err[(j+1) * nx + i]*bt_err[(j+1) * nx + i] + bt_err[(j-1) * nx + i]*bt_err[(j-1) * nx + i])) / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] ))+ |
(((bt[j * nx + (i+1)]-bt[j * nx + (i-1)])*(bt[j * nx + (i+1)]-bt[j * nx + (i-1)])) * (bt_err[j * nx + (i+1)]*bt_err[j * nx + (i+1)] + bt_err[j * nx + (i-1)]*bt_err[j * nx + (i-1)])) / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] )) ; | (((bt[j * nx + (i+1)]-bt[j * nx + (i-1)])*(bt[j * nx + (i+1)]-bt[j * nx + (i-1)])) * (bt_err[j * nx + (i+1)]*bt_err[j * nx + (i+1)] + bt_err[j * nx + (i-1)]*bt_err[j * nx + (i-1)])) / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] )) ; |
Line 396 int computeBhderivative(float *bh, float |
|
Line 402 int computeBhderivative(float *bh, float |
|
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
|
if ( (derx_bh[j * nx + i] + dery_bh[j * nx + i]) == 0) continue; |
|
if isnan(bh[j * nx + i]) continue; |
|
if isnan(bh[(j+1) * nx + i]) continue; |
|
if isnan(bh[(j-1) * nx + i]) continue; |
|
if isnan(bh[j * nx + i-1]) continue; |
|
if isnan(bh[j * nx + i+1]) continue; |
|
if isnan(bh_err[j * nx + i]) continue; |
if isnan(derx_bh[j * nx + i]) continue; | if isnan(derx_bh[j * nx + i]) continue; |
if isnan(dery_bh[j * nx + i]) continue; | if isnan(dery_bh[j * nx + i]) continue; |
sum += sqrt( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] ); /* Units of Gauss */ | sum += sqrt( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] ); /* Units of Gauss */ |
Line 485 int computeBzderivative(float *bz, float |
|
Line 498 int computeBzderivative(float *bz, float |
|
{ | { |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
// if ( (derx_bz[j * nx + i]-dery_bz[j * nx + i]) == 0) continue; |
|
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
|
if ( (derx_bz[j * nx + i] + dery_bz[j * nx + i]) == 0) continue; |
if isnan(bz[j * nx + i]) continue; | if isnan(bz[j * nx + i]) continue; |
//if isnan(bz_err[j * nx + i]) continue; |
if isnan(bz[(j+1) * nx + i]) continue; |
|
if isnan(bz[(j-1) * nx + i]) continue; |
|
if isnan(bz[j * nx + i-1]) continue; |
|
if isnan(bz[j * nx + i+1]) continue; |
|
if isnan(bz_err[j * nx + i]) continue; |
if isnan(derx_bz[j * nx + i]) continue; | if isnan(derx_bz[j * nx + i]) continue; |
if isnan(dery_bz[j * nx + i]) continue; | if isnan(dery_bz[j * nx + i]) continue; |
sum += sqrt( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] ); /* Units of Gauss */ | sum += sqrt( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] ); /* Units of Gauss */ |
err += (((bz[(j+1) * nx + i]-bz[(j-1) * nx + i])*(bz[(j+1) * nx + i]-bz[(j-1) * nx + i])) * (bz_err[(j+1) * nx + i]*bz_err[(j+1) * nx + i] + bz_err[(j-1) * nx + i]*bz_err[(j-1) * nx + i])) / (16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] ))+ |
err += (((bz[(j+1) * nx + i]-bz[(j-1) * nx + i])*(bz[(j+1) * nx + i]-bz[(j-1) * nx + i])) * (bz_err[(j+1) * nx + i]*bz_err[(j+1) * nx + i] + bz_err[(j-1) * nx + i]*bz_err[(j-1) * nx + i])) / |
(((bz[j * nx + (i+1)]-bz[j * nx + (i-1)])*(bz[j * nx + (i+1)]-bz[j * nx + (i-1)])) * (bz_err[j * nx + (i+1)]*bz_err[j * nx + (i+1)] + bz_err[j * nx + (i-1)]*bz_err[j * nx + (i-1)])) / (16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] )) ; |
(16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] )) + |
|
(((bz[j * nx + (i+1)]-bz[j * nx + (i-1)])*(bz[j * nx + (i+1)]-bz[j * nx + (i-1)])) * (bz_err[j * nx + (i+1)]*bz_err[j * nx + (i+1)] + bz_err[j * nx + (i-1)]*bz_err[j * nx + (i-1)])) / |
|
(16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] )) ; |
count_mask++; | count_mask++; |
} | } |
} | } |
Line 797 int computeHelicity(float *jz_err, float |
|
Line 816 int computeHelicity(float *jz_err, float |
|
*total_us_ih_err_ptr = (sqrt(err))*(1/cdelt1)*(rsun_obs/rsun_ref) ; // error in the quantity TOTUSJH | *total_us_ih_err_ptr = (sqrt(err))*(1/cdelt1)*(rsun_obs/rsun_ref) ; // error in the quantity TOTUSJH |
*total_abs_ih_err_ptr = (sqrt(err))*(1/cdelt1)*(rsun_obs/rsun_ref) ; // error in the quantity ABSNJZH | *total_abs_ih_err_ptr = (sqrt(err))*(1/cdelt1)*(rsun_obs/rsun_ref) ; // error in the quantity ABSNJZH |
| |
printf("MEANJZH=%f\n",*mean_ih_ptr); |
//printf("MEANJZH=%f\n",*mean_ih_ptr); |
printf("MEANJZH_err=%f\n",*mean_ih_err_ptr); |
//printf("MEANJZH_err=%f\n",*mean_ih_err_ptr); |
| |
printf("TOTUSJH=%f\n",*total_us_ih_ptr); |
//printf("TOTUSJH=%f\n",*total_us_ih_ptr); |
printf("TOTUSJH_err=%f\n",*total_us_ih_err_ptr); |
//printf("TOTUSJH_err=%f\n",*total_us_ih_err_ptr); |
| |
printf("ABSNJZH=%f\n",*total_abs_ih_ptr); |
//printf("ABSNJZH=%f\n",*total_abs_ih_ptr); |
printf("ABSNJZH_err=%f\n",*total_abs_ih_err_ptr); |
//printf("ABSNJZH_err=%f\n",*total_abs_ih_err_ptr); |
| |
return 0; | return 0; |
} | } |
Line 926 int computeFreeEnergy(float *bx_err, flo |
|
Line 945 int computeFreeEnergy(float *bx_err, flo |
|
| |
int computeShearAngle(float *bx_err, float *by_err, float *bz_err, float *bx, float *by, float *bz, float *bpx, float *bpy, float *bpz, int *dims, | int computeShearAngle(float *bx_err, float *by_err, float *bz_err, float *bx, float *by, float *bz, float *bpx, float *bpy, float *bpz, int *dims, |
float *meanshear_angleptr, float *meanshear_angle_err_ptr, float *area_w_shear_gt_45ptr, int *mask, int *bitmask) | float *meanshear_angleptr, float *meanshear_angle_err_ptr, float *area_w_shear_gt_45ptr, int *mask, int *bitmask) |
|
|
|
|
{ | { |
int nx = dims[0]; | int nx = dims[0]; |
int ny = dims[1]; | int ny = dims[1]; |
int i = 0; | int i = 0; |
int j = 0; | int j = 0; |
int count_mask = 0; |
float count_mask = 0; |
|
float count = 0; |
double dotproduct = 0.0; | double dotproduct = 0.0; |
double magnitude_potential = 0.0; | double magnitude_potential = 0.0; |
double magnitude_vector = 0.0; | double magnitude_vector = 0.0; |
double shear_angle = 0.0; | double shear_angle = 0.0; |
double denominator = 0.0; | double denominator = 0.0; |
double err = 0.0; |
|
double sum = 0.0; |
|
double count = 0.0; |
|
double term1 = 0.0; | double term1 = 0.0; |
double term2 = 0.0; | double term2 = 0.0; |
double term3 = 0.0; | double term3 = 0.0; |
|
double sumsum = 0.0; |
|
double err = 0.0; |
|
double part1 = 0.0; |
|
double part2 = 0.0; |
|
double part3 = 0.0; |
*area_w_shear_gt_45ptr = 0.0; | *area_w_shear_gt_45ptr = 0.0; |
*meanshear_angleptr = 0.0; | *meanshear_angleptr = 0.0; |
| |
Line 959 int computeShearAngle(float *bx_err, flo |
|
Line 983 int computeShearAngle(float *bx_err, flo |
|
if isnan(bz[j * nx + i]) continue; | if isnan(bz[j * nx + i]) continue; |
if isnan(bx[j * nx + i]) continue; | if isnan(bx[j * nx + i]) continue; |
if isnan(by[j * nx + i]) continue; | if isnan(by[j * nx + i]) continue; |
|
if isnan(bx_err[j * nx + i]) continue; |
|
if isnan(by_err[j * nx + i]) continue; |
|
if isnan(bz_err[j * nx + i]) continue; |
|
|
/* For mean 3D shear angle, percentage with shear greater than 45*/ | /* For mean 3D shear angle, percentage with shear greater than 45*/ |
dotproduct = (bpx[j * nx + i])*(bx[j * nx + i]) + (bpy[j * nx + i])*(by[j * nx + i]) + (bpz[j * nx + i])*(bz[j * nx + i]); | dotproduct = (bpx[j * nx + i])*(bx[j * nx + i]) + (bpy[j * nx + i])*(by[j * nx + i]) + (bpz[j * nx + i])*(bz[j * nx + i]); |
magnitude_potential = sqrt( (bpx[j * nx + i]*bpx[j * nx + i]) + (bpy[j * nx + i]*bpy[j * nx + i]) + (bpz[j * nx + i]*bpz[j * nx + i])); | magnitude_potential = sqrt( (bpx[j * nx + i]*bpx[j * nx + i]) + (bpy[j * nx + i]*bpy[j * nx + i]) + (bpz[j * nx + i]*bpz[j * nx + i])); |
magnitude_vector = sqrt( (bx[j * nx + i]*bx[j * nx + i]) + (by[j * nx + i]*by[j * nx + i]) + (bz[j * nx + i]*bz[j * nx + i]) ); | magnitude_vector = sqrt( (bx[j * nx + i]*bx[j * nx + i]) + (by[j * nx + i]*by[j * nx + i]) + (bz[j * nx + i]*bz[j * nx + i]) ); |
|
//printf("dotproduct=%f\n",dotproduct); |
|
//printf("magnitude_potential=%f\n",magnitude_potential); |
|
//printf("magnitude_vector=%f\n",magnitude_vector); |
|
|
shear_angle = acos(dotproduct/(magnitude_potential*magnitude_vector))*(180./PI); | shear_angle = acos(dotproduct/(magnitude_potential*magnitude_vector))*(180./PI); |
sum += shear_angle ; |
sumsum += shear_angle; |
|
//printf("shear_angle=%f\n",shear_angle); |
count ++; | count ++; |
|
|
if (shear_angle > 45) count_mask ++; | if (shear_angle > 45) count_mask ++; |
| |
/* For the error analysis*/ |
// For the error analysis |
// terms 1,2, and 3 are not squared |
|
term1 = -by[j * nx + i]*by[j * nx + i]*bpx[j * nx + i] + bx[j * nx + i]*by[j * nx + i]*bpy[j * nx + i] + bz[j * nx + i]*(bx[j * nx + i]*bpz[j * nx + i] - bz[j * nx + i]*bpx[j * nx + i]); |
term1 = bx[j * nx + i]*by[j * nx + i]*bpy[j * nx + i] - by[j * nx + i]*by[j * nx + i]*bpx[j * nx + i] + bz[j * nx + i]*bx[j * nx + i]*bpz[j * nx + i] - bz[j * nx + i]*bz[j * nx + i]*bpx[j * nx + i]; |
term2 = bx[j * nx + i]*bx[j * nx + i]*bpy[j * nx + i] - bx[j * nx + i]*by[j * nx + i]*bpx[j * nx + i] + bz[j * nx + i]*(bz[j * nx + i]*bpy[j * nx + i] - by[j * nx + i]*bpz[j * nx + i]); |
term2 = bx[j * nx + i]*bx[j * nx + i]*bpy[j * nx + i] - bx[j * nx + i]*by[j * nx + i]*bpx[j * nx + i] + bx[j * nx + i]*bz[j * nx + i]*bpy[j * nx + i] - bz[j * nx + i]*by[j * nx + i]*bpz[j * nx + i]; |
term3 = bx[j * nx + i]*bx[j * nx + i]*bpz[j * nx + i] - bx[j * nx + i]*bz[j * nx + i]*bpx[j * nx + i] + by[j * nx + i]*(by[j * nx + i]*bpz[j * nx + i] - bz[j * nx + i]*bpy[j * nx + i]); |
term3 = bx[j * nx + i]*bx[j * nx + i]*bpz[j * nx + i] - bx[j * nx + i]*bz[j * nx + i]*bpx[j * nx + i] + by[j * nx + i]*by[j * nx + i]*bpz[j * nx + i] - by[j * nx + i]*bz[j * nx + i]*bpy[j * nx + i]; |
|
|
|
part1 = bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]; |
|
part2 = bpx[j * nx + i]*bpx[j * nx + i] + bpy[j * nx + i]*bpy[j * nx + i] + bpz[j * nx + i]*bpz[j * nx + i]; |
|
part3 = bx[j * nx + i]*bpx[j * nx + i] + by[j * nx + i]*bpy[j * nx + i] + bz[j * nx + i]*bpz[j * nx + i]; |
| |
// denominator is squared | // denominator is squared |
denominator = (bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]) * |
denominator = part1*part1*part1*part2*(1.0-((part3*part3)/(part1*part2))); |
(bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]) * |
|
(bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]) * |
err = (term1*term1*bx_err[j * nx + i]*bx_err[j * nx + i])/(denominator) + |
(bpx[j * nx + i]*bpx[j * nx + i] + bpy[j * nx + i]*bpy[j * nx + i] * bpz[j * nx + i]*bpz[j * nx + i]) * |
(term1*term1*bx_err[j * nx + i]*bx_err[j * nx + i])/(denominator) + |
( 1-( ((bx[j * nx + i]*bpx[j * nx + i] + by[j * nx + i]*bpy[j * nx + i] + bz[j * nx + i]*bpz[j * nx + i]) * |
(term1*term1*bx_err[j * nx + i]*bx_err[j * nx + i])/(denominator) ; |
(bx[j * nx + i]*bpx[j * nx + i] + by[j * nx + i]*bpy[j * nx + i] + bz[j * nx + i]*bpz[j * nx + i])) / |
|
((bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]) * (bpx[j * nx + i]*bpx[j * nx + i] + bpy[j * nx + i]*bpy[j * nx + i] + bpz[j * nx + i]*bpz[j * nx + i])) )); |
|
|
|
err += ((term1*term1*bx_err[j * nx + i]*bx_err[j * nx + i])/(denominator)) + |
|
((term2*term2*by_err[j * nx + i]*by_err[j * nx + i])/(denominator)) + |
|
((term3*term3*bz_err[j * nx + i]*bz_err[j * nx + i])/(denominator)) ; |
|
} | } |
} | } |
|
|
/* For mean 3D shear angle, area with shear greater than 45*/ | /* For mean 3D shear angle, area with shear greater than 45*/ |
*meanshear_angleptr = (sum)/(count); /* Units are degrees */ |
*meanshear_angleptr = (sumsum)/(count); /* Units are degrees */ |
*meanshear_angle_err_ptr = ((sqrt(err))/(count))*(180./PI); |
*meanshear_angle_err_ptr = (sqrt(err)/count_mask)*(180./PI); |
| |
/* The area here is a fractional area -- the % of the total area. This has no error associated with it. */ | /* The area here is a fractional area -- the % of the total area. This has no error associated with it. */ |
*area_w_shear_gt_45ptr = (count_mask/(count))*(100.0); | *area_w_shear_gt_45ptr = (count_mask/(count))*(100.0); |
| |
printf("MEANSHR=%f\n",*meanshear_angleptr); |
//printf("MEANSHR=%f\n",*meanshear_angleptr); |
printf("MEANSHR_err=%f\n",*meanshear_angle_err_ptr); |
//printf("MEANSHR_err=%f\n",*meanshear_angle_err_ptr); |
|
//printf("SHRGT45=%f\n",*area_w_shear_gt_45ptr); |
|
|
|
return 0; |
|
} |
|
|
|
/*===========================================*/ |
|
/* Example function 15: R parameter as defined in Schrijver, 2007 */ |
|
// |
|
// Note that there is a restriction on the function fsample() |
|
// If the following occurs: |
|
// nx_out > floor((ny_in-1)/scale + 1) |
|
// ny_out > floor((ny_in-1)/scale + 1), |
|
// where n*_out are the dimensions of the output array and n*_in |
|
// are the dimensions of the input array, fsample() will usually result |
|
// in a segfault (though not always, depending on how the segfault was accessed.) |
|
|
|
int computeR(float *bz_err, float *los, int *dims, float *Rparam, float cdelt1, |
|
float *rim, float *p1p0, float *p1n0, float *p1p, float *p1n, float *p1, |
|
float *pmap, int nx1, int ny1, |
|
int scale, float *p1pad, int nxp, int nyp, float *pmapn) |
|
|
|
{ |
|
int nx = dims[0]; |
|
int ny = dims[1]; |
|
int i = 0; |
|
int j = 0; |
|
int index, index1; |
|
double sum = 0.0; |
|
double err = 0.0; |
|
*Rparam = 0.0; |
|
struct fresize_struct fresboxcar, fresgauss; |
|
struct fint_struct fints; |
|
float sigma = 10.0/2.3548; |
|
|
|
// set up convolution kernels |
|
init_fresize_boxcar(&fresboxcar,1,1); |
|
init_fresize_gaussian(&fresgauss,sigma,20,1); |
|
|
|
// =============== [STEP 1] =============== |
|
// bin the line-of-sight magnetogram down by a factor of scale |
|
fsample(los, rim, nx, ny, nx, nx1, ny1, nx1, scale, 0, 0, 0.0); |
|
|
|
// =============== [STEP 2] =============== |
|
// identify positive and negative pixels greater than +/- 150 gauss |
|
// and label those pixels with a 1.0 in arrays p1p0 and p1n0 |
|
for (i = 0; i < nx1; i++) |
|
{ |
|
for (j = 0; j < ny1; j++) |
|
{ |
|
index = j * nx1 + i; |
|
if (rim[index] > 150) |
|
p1p0[index]=1.0; |
|
else |
|
p1p0[index]=0.0; |
|
if (rim[index] < -150) |
|
p1n0[index]=1.0; |
|
else |
|
p1n0[index]=0.0; |
|
} |
|
} |
|
|
|
// =============== [STEP 3] =============== |
|
// smooth each of the negative and positive pixel bitmaps |
|
fresize(&fresboxcar, p1p0, p1p, nx1, ny1, nx1, nx1, ny1, nx1, 0, 0, 0.0); |
|
fresize(&fresboxcar, p1n0, p1n, nx1, ny1, nx1, nx1, ny1, nx1, 0, 0, 0.0); |
|
|
|
// =============== [STEP 4] =============== |
|
// find the pixels for which p1p and p1n are both equal to 1. |
|
// this defines the polarity inversion line |
|
for (i = 0; i < nx1; i++) |
|
{ |
|
for (j = 0; j < ny1; j++) |
|
{ |
|
index = j * nx1 + i; |
|
if ((p1p[index] > 0.0) && (p1n[index] > 0.0)) |
|
p1[index]=1.0; |
|
else |
|
p1[index]=0.0; |
|
} |
|
} |
|
|
|
// pad p1 with zeroes so that the gaussian colvolution in step 5 |
|
// does not cut off data within hwidth of the edge |
|
|
|
// step i: zero p1pad |
|
for (i = 0; i < nxp; i++) |
|
{ |
|
for (j = 0; j < nyp; j++) |
|
{ |
|
index = j * nxp + i; |
|
p1pad[index]=0.0; |
|
} |
|
} |
|
|
|
// step ii: place p1 at the center of p1pad |
|
for (i = 0; i < nx1; i++) |
|
{ |
|
for (j = 0; j < ny1; j++) |
|
{ |
|
index = j * nx1 + i; |
|
index1 = (j+20) * nxp + (i+20); |
|
p1pad[index1]=p1[index]; |
|
} |
|
} |
|
|
|
// =============== [STEP 5] =============== |
|
// convolve the polarity inversion line map with a gaussian |
|
// to identify the region near the plarity inversion line |
|
// the resultant array is called pmap |
|
fresize(&fresgauss, p1pad, pmap, nxp, nyp, nxp, nxp, nyp, nxp, 0, 0, 0.0); |
|
|
|
|
|
// select out the nx1 x ny1 non-padded array within pmap |
|
for (i = 0; i < nx1; i++) |
|
{ |
|
for (j = 0; j < ny1; j++) |
|
{ |
|
index = j * nx1 + i; |
|
index1 = (j+20) * nxp + (i+20); |
|
pmapn[index]=pmap[index1]; |
|
} |
|
} |
|
|
|
// =============== [STEP 6] =============== |
|
// the R parameter is calculated |
|
for (i = 0; i < nx1; i++) |
|
{ |
|
for (j = 0; j < ny1; j++) |
|
{ |
|
index = j * nx1 + i; |
|
sum += pmapn[index]*abs(rim[index]); |
|
} |
|
} |
|
|
|
if (sum < 1.0) |
|
*Rparam = 0.0; |
|
else |
|
*Rparam = log10(sum); |
|
|
|
free_fresize(&fresboxcar); |
|
free_fresize(&fresgauss); |
| |
return 0; | return 0; |
|
|
} | } |
| |
|
/*===========================================*/ |
|
/* Example function 16: Lorentz force as defined in Fisher, 2012 */ |
|
// |
|
// This calculation is adapted from Xudong's code |
|
// at /proj/cgem/lorentz/apps/lorentz.c |
|
|
|
int computeLorentz(float *bx, float *by, float *bz, float *fx, float *fy, float *fz, int *dims, |
|
float *totfx_ptr, float *totfy_ptr, float *totfz_ptr, float *totbsq_ptr, |
|
float *epsx_ptr, float *epsy_ptr, float *epsz_ptr, int *mask, int *bitmask, |
|
float cdelt1, double rsun_ref, double rsun_obs) |
|
|
|
{ |
|
|
|
int nx = dims[0]; |
|
int ny = dims[1]; |
|
int nxny = nx*ny; |
|
int j = 0; |
|
int index; |
|
double totfx = 0, totfy = 0, totfz = 0; |
|
double bsq = 0, totbsq = 0; |
|
double epsx = 0, epsy = 0, epsz = 0; |
|
double area = cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0; |
|
double k_h = -1.0 * area / (4. * PI) / 1.0e20; |
|
double k_z = area / (8. * PI) / 1.0e20; |
|
|
|
/* Multiplier */ |
|
float vectorMulti[] = {1.,-1.,1.}; |
|
|
|
if (nx <= 0 || ny <= 0) return 1; |
|
|
|
for (int i = 0; i < nxny; i++) |
|
{ |
|
if ( mask[i] < 70 || bitmask[i] < 30 ) continue; |
|
if isnan(bx[i]) continue; |
|
if isnan(by[i]) continue; |
|
if isnan(bz[i]) continue; |
|
fx[i] = (bx[i] * vectorMulti[0]) * (bz[i] * vectorMulti[2]) * k_h; |
|
fy[i] = (by[i] * vectorMulti[1]) * (bz[i] * vectorMulti[2]) * k_h; |
|
fz[i] = (bx[i] * bx[i] + by[i] * by[i] - bz[i] * bz[i]) * k_z; |
|
bsq = bx[i] * bx[i] + by[i] * by[i] + bz[i] * bz[i]; |
|
totfx += fx[i]; totfy += fy[i]; totfz += fz[i]; |
|
totbsq += bsq; |
|
} |
|
|
|
*totfx_ptr = totfx; |
|
*totfy_ptr = totfy; |
|
*totfz_ptr = totfz; |
|
*totbsq_ptr = totbsq; |
|
*epsx_ptr = (totfx / k_h) / totbsq; |
|
*epsy_ptr = (totfy / k_h) / totbsq; |
|
*epsz_ptr = (totfz / k_z) / totbsq; |
|
|
|
return 0; |
|
|
|
} |
| |
/*==================KEIJI'S CODE =========================*/ | /*==================KEIJI'S CODE =========================*/ |
| |
Line 1121 void greenpot(float *bx, float *by, floa |
|
Line 1350 void greenpot(float *bx, float *by, floa |
|
| |
char *sw_functions_version() // Returns CVS version of sw_functions.c | char *sw_functions_version() // Returns CVS version of sw_functions.c |
{ | { |
return strdup("$Id$"); |
return strdup("$Id"); |
} | } |
| |
/* ---------------- end of this file ----------------*/ | /* ---------------- end of this file ----------------*/ |