version 1.23, 2014/02/18 19:50:19
|
version 1.31, 2014/06/05 21:27:04
|
|
|
MEANPOT Mean photospheric excess magnetic energy density in ergs per cubic centimeter | MEANPOT Mean photospheric excess magnetic energy density in ergs per cubic centimeter |
TOTPOT Total photospheric magnetic energy density in ergs per cubic centimeter | TOTPOT Total photospheric magnetic energy density in ergs per cubic centimeter |
MEANSHR Mean shear angle (measured using Btotal) in degrees | MEANSHR Mean shear angle (measured using Btotal) in degrees |
|
R_VALUE Karel Schrijver's R parameter |
| |
The indices are calculated on the pixels in which the conf_disambig segment is greater than 70 and | The indices are calculated on the pixels in which the conf_disambig segment is greater than 70 and |
pixels in which the bitmap segment is greater than 30. These ranges are selected because the CCD | pixels in which the bitmap segment is greater than 30. These ranges are selected because the CCD |
Line 1035 int computeShearAngle(float *bx_err, flo |
|
Line 1036 int computeShearAngle(float *bx_err, flo |
|
} | } |
| |
/*===========================================*/ | /*===========================================*/ |
|
/* Example function 15: R parameter as defined in Schrijver, 2007 */ |
|
// |
|
// Note that there is a restriction on the function fsample() |
|
// If the following occurs: |
|
// nx_out > floor((ny_in-1)/scale + 1) |
|
// ny_out > floor((ny_in-1)/scale + 1), |
|
// where n*_out are the dimensions of the output array and n*_in |
|
// are the dimensions of the input array, fsample() will usually result |
|
// in a segfault (though not always, depending on how the segfault was accessed.) |
|
|
int computeR(float *bz_err, float *los, int *dims, float *Rparam, float cdelt1, | int computeR(float *bz_err, float *los, int *dims, float *Rparam, float cdelt1, |
float *rim, float *p1p0, float *p1n0, float *p1p, float *p1n, float *p1, | float *rim, float *p1p0, float *p1n0, float *p1p, float *p1n, float *p1, |
float *pmap, int nx1, int ny1) |
float *pmap, int nx1, int ny1, |
{ |
int scale, float *p1pad, int nxp, int nyp, float *pmapn) |
| |
|
{ |
int nx = dims[0]; | int nx = dims[0]; |
int ny = dims[1]; | int ny = dims[1]; |
int i = 0; | int i = 0; |
int j = 0; | int j = 0; |
int index; |
int index, index1; |
double sum = 0.0; | double sum = 0.0; |
double err = 0.0; | double err = 0.0; |
*Rparam = 0.0; | *Rparam = 0.0; |
struct fresize_struct fresboxcar, fresgauss; | struct fresize_struct fresboxcar, fresgauss; |
int scale = round(2.0/cdelt1); |
struct fint_struct fints; |
float sigma = 10.0/2.3548; | float sigma = 10.0/2.3548; |
| |
|
// set up convolution kernels |
init_fresize_boxcar(&fresboxcar,1,1); | init_fresize_boxcar(&fresboxcar,1,1); |
|
|
// setup convolution kernel |
|
//init_fresize_gaussian(&fresgauss,sigma,4,1); |
|
init_fresize_gaussian(&fresgauss,sigma,20,1); | init_fresize_gaussian(&fresgauss,sigma,20,1); |
| |
if ((nx || ny) < 40.) return -1; |
// =============== [STEP 1] =============== |
|
// bin the line-of-sight magnetogram down by a factor of scale |
//float *test = (float *)malloc(nx1*ny1*sizeof(float)); |
|
|
|
fsample(los, rim, nx, ny, nx, nx1, ny1, nx1, scale, 0, 0, 0.0); | fsample(los, rim, nx, ny, nx, nx1, ny1, nx1, scale, 0, 0, 0.0); |
|
|
|
// =============== [STEP 2] =============== |
|
// identify positive and negative pixels greater than +/- 150 gauss |
|
// and label those pixels with a 1.0 in arrays p1p0 and p1n0 |
for (i = 0; i < nx1; i++) | for (i = 0; i < nx1; i++) |
{ | { |
for (j = 0; j < ny1; j++) | for (j = 0; j < ny1; j++) |
Line 1079 int computeR(float *bz_err, float *los, |
|
Line 1091 int computeR(float *bz_err, float *los, |
|
} | } |
} | } |
| |
|
// =============== [STEP 3] =============== |
|
// smooth each of the negative and positive pixel bitmaps |
fresize(&fresboxcar, p1p0, p1p, nx1, ny1, nx1, nx1, ny1, nx1, 0, 0, 0.0); | fresize(&fresboxcar, p1p0, p1p, nx1, ny1, nx1, nx1, ny1, nx1, 0, 0, 0.0); |
fresize(&fresboxcar, p1n0, p1n, nx1, ny1, nx1, nx1, ny1, nx1, 0, 0, 0.0); | fresize(&fresboxcar, p1n0, p1n, nx1, ny1, nx1, nx1, ny1, nx1, 0, 0, 0.0); |
| |
|
// =============== [STEP 4] =============== |
|
// find the pixels for which p1p and p1n are both equal to 1. |
|
// this defines the polarity inversion line |
for (i = 0; i < nx1; i++) | for (i = 0; i < nx1; i++) |
{ | { |
for (j = 0; j < ny1; j++) | for (j = 0; j < ny1; j++) |
{ | { |
index = j * nx1 + i; | index = j * nx1 + i; |
if (p1p[index] > 0 && p1n[index] > 0) |
if ((p1p[index] > 0.0) && (p1n[index] > 0.0)) |
p1[index]=1.0; | p1[index]=1.0; |
else | else |
p1[index]=0.0; | p1[index]=0.0; |
} | } |
} | } |
| |
fresize(&fresgauss, p1, pmap, nx1, ny1, nx1, nx1, ny1, nx1, 0, 0, 0.0); |
// pad p1 with zeroes so that the gaussian colvolution in step 5 |
|
// does not cut off data within hwidth of the edge |
|
|
|
// step i: zero p1pad |
|
for (i = 0; i < nxp; i++) |
|
{ |
|
for (j = 0; j < nyp; j++) |
|
{ |
|
index = j * nxp + i; |
|
p1pad[index]=0.0; |
|
} |
|
} |
|
|
|
// step ii: place p1 at the center of p1pad |
|
for (i = 0; i < nx1; i++) |
|
{ |
|
for (j = 0; j < ny1; j++) |
|
{ |
|
index = j * nx1 + i; |
|
index1 = (j+20) * nxp + (i+20); |
|
p1pad[index1]=p1[index]; |
|
} |
|
} |
|
|
|
// =============== [STEP 5] =============== |
|
// convolve the polarity inversion line map with a gaussian |
|
// to identify the region near the plarity inversion line |
|
// the resultant array is called pmap |
|
fresize(&fresgauss, p1pad, pmap, nxp, nyp, nxp, nxp, nyp, nxp, 0, 0, 0.0); |
|
|
|
|
|
// select out the nx1 x ny1 non-padded array within pmap |
|
for (i = 0; i < nx1; i++) |
|
{ |
|
for (j = 0; j < ny1; j++) |
|
{ |
|
index = j * nx1 + i; |
|
index1 = (j+20) * nxp + (i+20); |
|
pmapn[index]=pmap[index1]; |
|
} |
|
} |
| |
|
// =============== [STEP 6] =============== |
|
// the R parameter is calculated |
for (i = 0; i < nx1; i++) | for (i = 0; i < nx1; i++) |
{ | { |
for (j = 0; j < ny1; j++) | for (j = 0; j < ny1; j++) |
{ | { |
index = j * nx1 + i; | index = j * nx1 + i; |
sum += pmap[index]*abs(rim[index]); |
sum += pmapn[index]*abs(rim[index]); |
} | } |
} | } |
| |
Line 1110 int computeR(float *bz_err, float *los, |
|
Line 1169 int computeR(float *bz_err, float *los, |
|
else | else |
*Rparam = log10(sum); | *Rparam = log10(sum); |
| |
printf("Rparam=%f",*Rparam); |
|
|
|
free_fresize(&fresboxcar); | free_fresize(&fresboxcar); |
free_fresize(&fresgauss); | free_fresize(&fresgauss); |
| |
return 0; | return 0; |
|
|
} | } |
| |
|
/*===========================================*/ |
|
/* Example function 16: Lorentz force as defined in Fisher, 2012 */ |
|
// |
|
// This calculation is adapted from Xudong's code |
|
// at /proj/cgem/lorentz/apps/lorentz.c |
|
|
|
int computeLorentz(float *bx, float *by, float *bz, float *fx, float *fy, float *fz, int *dims, |
|
float *totfx_ptr, float *totfy_ptr, float *totfz_ptr, float *totbsq_ptr, |
|
float *epsx_ptr, float *epsy_ptr, float *epsz_ptr, int *mask, int *bitmask, |
|
float cdelt1, double rsun_ref, double rsun_obs) |
|
|
|
{ |
|
|
|
int nx = dims[0]; |
|
int ny = dims[1]; |
|
int nxny = nx*ny; |
|
int j = 0; |
|
int index; |
|
double totfx = 0, totfy = 0, totfz = 0; |
|
double bsq = 0, totbsq = 0; |
|
double epsx = 0, epsy = 0, epsz = 0; |
|
double area = cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0; |
|
double k_h = -1.0 * area / (4. * PI) / 1.0e20; |
|
double k_z = area / (8. * PI) / 1.0e20; |
|
|
|
/* Multiplier */ |
|
float vectorMulti[] = {1.,-1.,1.}; |
|
|
|
if (nx <= 0 || ny <= 0) return 1; |
|
|
|
for (int i = 0; i < nxny; i++) |
|
{ |
|
if ( mask[i] < 70 || bitmask[i] < 30 ) continue; |
|
if isnan(bx[i]) continue; |
|
if isnan(by[i]) continue; |
|
if isnan(bz[i]) continue; |
|
fx[i] = (bx[i] * vectorMulti[0]) * (bz[i] * vectorMulti[2]) * k_h; |
|
fy[i] = (by[i] * vectorMulti[1]) * (bz[i] * vectorMulti[2]) * k_h; |
|
fz[i] = (bx[i] * bx[i] + by[i] * by[i] - bz[i] * bz[i]) * k_z; |
|
bsq = bx[i] * bx[i] + by[i] * by[i] + bz[i] * bz[i]; |
|
totfx += fx[i]; totfy += fy[i]; totfz += fz[i]; |
|
totbsq += bsq; |
|
} |
|
|
|
*totfx_ptr = totfx; |
|
*totfy_ptr = totfy; |
|
*totfz_ptr = totfz; |
|
*totbsq_ptr = totbsq; |
|
*epsx_ptr = (totfx / k_h) / totbsq; |
|
*epsy_ptr = (totfy / k_h) / totbsq; |
|
*epsz_ptr = (totfz / k_z) / totbsq; |
|
|
|
return 0; |
|
|
|
} |
| |
/*==================KEIJI'S CODE =========================*/ | /*==================KEIJI'S CODE =========================*/ |
| |
Line 1237 void greenpot(float *bx, float *by, floa |
|
Line 1350 void greenpot(float *bx, float *by, floa |
|
| |
char *sw_functions_version() // Returns CVS version of sw_functions.c | char *sw_functions_version() // Returns CVS version of sw_functions.c |
{ | { |
return strdup("$Id$"); |
return strdup("$Id"); |
} | } |
| |
/* ---------------- end of this file ----------------*/ | /* ---------------- end of this file ----------------*/ |