(file) Return to sw_functions.c CVS log (file) (dir) Up to [Development] / JSOC / proj / sharp / apps

Diff for /JSOC/proj/sharp/apps/sw_functions.c between version 1.31 and 1.36

version 1.31, 2014/06/05 21:27:04 version 1.36, 2015/10/30 18:53:02
Line 196  int computeGamma(float *bz_err, float *b
Line 196  int computeGamma(float *bz_err, float *b
     *mean_gamma_err_ptr = (sqrt(err)/(count_mask))*(180./PI);     *mean_gamma_err_ptr = (sqrt(err)/(count_mask))*(180./PI);
     //printf("MEANGAM=%f\n",*mean_gamma_ptr);     //printf("MEANGAM=%f\n",*mean_gamma_ptr);
     //printf("MEANGAM_err=%f\n",*mean_gamma_err_ptr);     //printf("MEANGAM_err=%f\n",*mean_gamma_err_ptr);
       printf("sum,count_mask=%f,%d\n",sum,count_mask);
       printf("bh[200,200],bh_err[200,200]=%f,%f\n",bh[200,200],bh_err[200,200]);
   
     return 0;     return 0;
 } }
  
Line 246  int computeB_total(float *bx_err, float
Line 249  int computeB_total(float *bx_err, float
 /*===========================================*/ /*===========================================*/
 /* Example function 5:  Derivative of B_Total SQRT( (dBt/dx)^2 + (dBt/dy)^2 ) */ /* Example function 5:  Derivative of B_Total SQRT( (dBt/dx)^2 + (dBt/dy)^2 ) */
  
 int computeBtotalderivative(float *bt, int *dims, float *mean_derivative_btotal_ptr, int *mask, int *bitmask, float *derx_bt, float *dery_bt, float *bt_err, float *mean_derivative_btotal_err_ptr)  int computeBtotalderivative(float *bt, int *dims, float *mean_derivative_btotal_ptr, int *mask, int *bitmask, float *derx_bt, float *dery_bt, float *bt_err, float *mean_derivative_btotal_err_ptr, float *err_term1, float *err_term2)
 { {
  
     int nx = dims[0];     int nx = dims[0];
Line 266  int computeBtotalderivative(float *bt, i
Line 269  int computeBtotalderivative(float *bt, i
             for (j = 0; j <= ny-1; j++)             for (j = 0; j <= ny-1; j++)
         {         {
             derx_bt[j * nx + i] = (bt[j * nx + i+1] - bt[j * nx + i-1])*0.5;             derx_bt[j * nx + i] = (bt[j * nx + i+1] - bt[j * nx + i-1])*0.5;
              err_term1[j * nx + i] = (((bt[j * nx + (i+1)]-bt[j * nx + (i-1)])*(bt[j * nx + (i+1)]-bt[j * nx + (i-1)])) * (bt_err[j * nx + (i+1)]*bt_err[j * nx + (i+1)] + bt_err[j * nx + (i-1)]*bt_err[j * nx + (i-1)])) ;
         }         }
     }     }
  
Line 275  int computeBtotalderivative(float *bt, i
Line 279  int computeBtotalderivative(float *bt, i
             for (j = 1; j <= ny-2; j++)             for (j = 1; j <= ny-2; j++)
         {         {
             dery_bt[j * nx + i] = (bt[(j+1) * nx + i] - bt[(j-1) * nx + i])*0.5;             dery_bt[j * nx + i] = (bt[(j+1) * nx + i] - bt[(j-1) * nx + i])*0.5;
              err_term2[j * nx + i] = (((bt[(j+1) * nx + i]-bt[(j-1) * nx + i])*(bt[(j+1) * nx + i]-bt[(j-1) * nx + i])) * (bt_err[(j+1) * nx + i]*bt_err[(j+1) * nx + i] + bt_err[(j-1) * nx + i]*bt_err[(j-1) * nx + i])) ;
         }         }
     }     }
  
       /* consider the edges for the arrays that contribute to the variable "sum" in the computation below.
     /* consider the edges */      ignore the edges for the error terms as those arrays have been initialized to zero.
       this is okay because the error term will ultimately not include the edge pixels as they are selected out by the mask and bitmask arrays.*/
     i=0;     i=0;
     for (j = 0; j <= ny-1; j++)     for (j = 0; j <= ny-1; j++)
     {     {
Line 304  int computeBtotalderivative(float *bt, i
Line 310  int computeBtotalderivative(float *bt, i
         dery_bt[j * nx + i] = ( (3*bt[j * nx + i]) + (-4*bt[(j-1) * nx + i]) - (-bt[(j-2) * nx + i]) )*0.5;         dery_bt[j * nx + i] = ( (3*bt[j * nx + i]) + (-4*bt[(j-1) * nx + i]) - (-bt[(j-2) * nx + i]) )*0.5;
     }     }
  
       // Calculate the sum only
     for (i = 1; i <= nx-2; i++)     for (i = 1; i <= nx-2; i++)
     {     {
         for (j = 1; j <= ny-2; j++)         for (j = 1; j <= ny-2; j++)
Line 320  int computeBtotalderivative(float *bt, i
Line 326  int computeBtotalderivative(float *bt, i
             if isnan(derx_bt[j * nx + i]) continue;             if isnan(derx_bt[j * nx + i]) continue;
             if isnan(dery_bt[j * nx + i]) continue;             if isnan(dery_bt[j * nx + i]) continue;
             sum += sqrt( derx_bt[j * nx + i]*derx_bt[j * nx + i]  + dery_bt[j * nx + i]*dery_bt[j * nx + i]  ); /* Units of Gauss */             sum += sqrt( derx_bt[j * nx + i]*derx_bt[j * nx + i]  + dery_bt[j * nx + i]*dery_bt[j * nx + i]  ); /* Units of Gauss */
             err += (((bt[(j+1) * nx + i]-bt[(j-1) * nx + i])*(bt[(j+1) * nx + i]-bt[(j-1) * nx + i])) * (bt_err[(j+1) * nx + i]*bt_err[(j+1) * nx + i] + bt_err[(j-1) * nx + i]*bt_err[(j-1) * nx + i])) / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i]  + dery_bt[j * nx + i]*dery_bt[j * nx + i]  ))+              err += err_term2[j * nx + i] / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i]  + dery_bt[j * nx + i]*dery_bt[j * nx + i]  ))+
             (((bt[j * nx + (i+1)]-bt[j * nx + (i-1)])*(bt[j * nx + (i+1)]-bt[j * nx + (i-1)])) * (bt_err[j * nx + (i+1)]*bt_err[j * nx + (i+1)] + bt_err[j * nx + (i-1)]*bt_err[j * nx + (i-1)])) / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i]  + dery_bt[j * nx + i]*dery_bt[j * nx + i]  )) ;                     err_term1[j * nx + i] / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i]  + dery_bt[j * nx + i]*dery_bt[j * nx + i]  )) ;
             count_mask++;             count_mask++;
         }         }
     }     }
Line 338  int computeBtotalderivative(float *bt, i
Line 344  int computeBtotalderivative(float *bt, i
 /*===========================================*/ /*===========================================*/
 /* Example function 6:  Derivative of Bh SQRT( (dBh/dx)^2 + (dBh/dy)^2 ) */ /* Example function 6:  Derivative of Bh SQRT( (dBh/dx)^2 + (dBh/dy)^2 ) */
  
 int computeBhderivative(float *bh, float *bh_err, int *dims, float *mean_derivative_bh_ptr, float *mean_derivative_bh_err_ptr, int *mask, int *bitmask, float *derx_bh, float *dery_bh)  int computeBhderivative(float *bh, float *bh_err, int *dims, float *mean_derivative_bh_ptr, float *mean_derivative_bh_err_ptr, int *mask, int *bitmask, float *derx_bh, float *dery_bh, float *err_term1, float *err_term2)
 { {
  
     int nx = dims[0];     int nx = dims[0];
Line 358  int computeBhderivative(float *bh, float
Line 364  int computeBhderivative(float *bh, float
             for (j = 0; j <= ny-1; j++)             for (j = 0; j <= ny-1; j++)
         {         {
             derx_bh[j * nx + i] = (bh[j * nx + i+1] - bh[j * nx + i-1])*0.5;             derx_bh[j * nx + i] = (bh[j * nx + i+1] - bh[j * nx + i-1])*0.5;
              err_term1[j * nx + i] = (((bh[j * nx + (i+1)]-bh[j * nx + (i-1)])*(bh[j * nx + (i+1)]-bh[j * nx + (i-1)])) * (bh_err[j * nx + (i+1)]*bh_err[j * nx + (i+1)] + bh_err[j * nx + (i-1)]*bh_err[j * nx + (i-1)]));
         }         }
     }     }
  
Line 367  int computeBhderivative(float *bh, float
Line 374  int computeBhderivative(float *bh, float
             for (j = 1; j <= ny-2; j++)             for (j = 1; j <= ny-2; j++)
         {         {
             dery_bh[j * nx + i] = (bh[(j+1) * nx + i] - bh[(j-1) * nx + i])*0.5;             dery_bh[j * nx + i] = (bh[(j+1) * nx + i] - bh[(j-1) * nx + i])*0.5;
             err_term2[j * nx + i] = (((bh[ (j+1) * nx + i]-bh[(j-1) * nx + i])*(bh[(j+1) * nx + i]-bh[(j-1) * nx + i])) * (bh_err[(j+1) * nx + i]*bh_err[(j+1) * nx + i] + bh_err[(j-1) * nx + i]*bh_err[(j-1) * nx + i]));
         }         }
     }     }
  
       /* consider the edges for the arrays that contribute to the variable "sum" in the computation below.
     /* consider the edges */      ignore the edges for the error terms as those arrays have been initialized to zero.
       this is okay because the error term will ultimately not include the edge pixels as they are selected out by the mask and bitmask arrays.*/
     i=0;     i=0;
     for (j = 0; j <= ny-1; j++)     for (j = 0; j <= ny-1; j++)
     {     {
Line 412  int computeBhderivative(float *bh, float
Line 421  int computeBhderivative(float *bh, float
             if isnan(derx_bh[j * nx + i]) continue;             if isnan(derx_bh[j * nx + i]) continue;
             if isnan(dery_bh[j * nx + i]) continue;             if isnan(dery_bh[j * nx + i]) continue;
             sum += sqrt( derx_bh[j * nx + i]*derx_bh[j * nx + i]  + dery_bh[j * nx + i]*dery_bh[j * nx + i]  ); /* Units of Gauss */             sum += sqrt( derx_bh[j * nx + i]*derx_bh[j * nx + i]  + dery_bh[j * nx + i]*dery_bh[j * nx + i]  ); /* Units of Gauss */
             err += (((bh[(j+1) * nx + i]-bh[(j-1) * nx + i])*(bh[(j+1) * nx + i]-bh[(j-1) * nx + i])) * (bh_err[(j+1) * nx + i]*bh_err[(j+1) * nx + i] + bh_err[(j-1) * nx + i]*bh_err[(j-1) * nx + i])) / (16.0*( derx_bh[j * nx + i]*derx_bh[j * nx + i]  + dery_bh[j * nx + i]*dery_bh[j * nx + i]  ))+              err += err_term2[j * nx + i] / (16.0*( derx_bh[j * nx + i]*derx_bh[j * nx + i]  + dery_bh[j * nx + i]*dery_bh[j * nx + i]  ))+
             (((bh[j * nx + (i+1)]-bh[j * nx + (i-1)])*(bh[j * nx + (i+1)]-bh[j * nx + (i-1)])) * (bh_err[j * nx + (i+1)]*bh_err[j * nx + (i+1)] + bh_err[j * nx + (i-1)]*bh_err[j * nx + (i-1)])) / (16.0*( derx_bh[j * nx + i]*derx_bh[j * nx + i]  + dery_bh[j * nx + i]*dery_bh[j * nx + i]  )) ;                     err_term1[j * nx + i] / (16.0*( derx_bh[j * nx + i]*derx_bh[j * nx + i]  + dery_bh[j * nx + i]*dery_bh[j * nx + i]  )) ;
             count_mask++;             count_mask++;
         }         }
     }     }
Line 429  int computeBhderivative(float *bh, float
Line 438  int computeBhderivative(float *bh, float
 /*===========================================*/ /*===========================================*/
 /* Example function 7:  Derivative of B_vertical SQRT( (dBz/dx)^2 + (dBz/dy)^2 ) */ /* Example function 7:  Derivative of B_vertical SQRT( (dBz/dx)^2 + (dBz/dy)^2 ) */
  
 int computeBzderivative(float *bz, float *bz_err, int *dims, float *mean_derivative_bz_ptr, float *mean_derivative_bz_err_ptr, int *mask, int *bitmask, float *derx_bz, float *dery_bz)  int computeBzderivative(float *bz, float *bz_err, int *dims, float *mean_derivative_bz_ptr, float *mean_derivative_bz_err_ptr, int *mask, int *bitmask, float *derx_bz, float *dery_bz, float *err_term1, float *err_term2)
 { {
  
     int nx = dims[0];     int nx = dims[0];
Line 448  int computeBzderivative(float *bz, float
Line 457  int computeBzderivative(float *bz, float
     {     {
             for (j = 0; j <= ny-1; j++)             for (j = 0; j <= ny-1; j++)
         {         {
             if isnan(bz[j * nx + i]) continue;  
             derx_bz[j * nx + i] = (bz[j * nx + i+1] - bz[j * nx + i-1])*0.5;             derx_bz[j * nx + i] = (bz[j * nx + i+1] - bz[j * nx + i-1])*0.5;
              err_term1[j * nx + i] = (((bz[j * nx + (i+1)]-bz[j * nx + (i-1)])*(bz[j * nx + (i+1)]-bz[j * nx + (i-1)])) * (bz_err[j * nx + (i+1)]*bz_err[j * nx + (i+1)] + bz_err[j * nx + (i-1)]*bz_err[j * nx + (i-1)]));
         }         }
     }     }
  
Line 458  int computeBzderivative(float *bz, float
Line 467  int computeBzderivative(float *bz, float
     {     {
             for (j = 1; j <= ny-2; j++)             for (j = 1; j <= ny-2; j++)
         {         {
             if isnan(bz[j * nx + i]) continue;  
             dery_bz[j * nx + i] = (bz[(j+1) * nx + i] - bz[(j-1) * nx + i])*0.5;             dery_bz[j * nx + i] = (bz[(j+1) * nx + i] - bz[(j-1) * nx + i])*0.5;
              err_term2[j * nx + i] = (((bz[(j+1) * nx + i]-bz[(j-1) * nx + i])*(bz[(j+1) * nx + i]-bz[(j-1) * nx + i])) * (bz_err[(j+1) * nx + i]*bz_err[(j+1) * nx + i] + bz_err[(j-1) * nx + i]*bz_err[(j-1) * nx + i]));
         }         }
     }     }
  
       /* consider the edges for the arrays that contribute to the variable "sum" in the computation below.
     /* consider the edges */      ignore the edges for the error terms as those arrays have been initialized to zero.
       this is okay because the error term will ultimately not include the edge pixels as they are selected out by the mask and bitmask arrays.*/
     i=0;     i=0;
     for (j = 0; j <= ny-1; j++)     for (j = 0; j <= ny-1; j++)
     {     {
         if isnan(bz[j * nx + i]) continue;  
         derx_bz[j * nx + i] = ( (-3*bz[j * nx + i]) + (4*bz[j * nx + (i+1)]) - (bz[j * nx + (i+2)]) )*0.5;         derx_bz[j * nx + i] = ( (-3*bz[j * nx + i]) + (4*bz[j * nx + (i+1)]) - (bz[j * nx + (i+2)]) )*0.5;
     }     }
  
     i=nx-1;     i=nx-1;
     for (j = 0; j <= ny-1; j++)     for (j = 0; j <= ny-1; j++)
     {     {
         if isnan(bz[j * nx + i]) continue;  
         derx_bz[j * nx + i] = ( (3*bz[j * nx + i]) + (-4*bz[j * nx + (i-1)]) - (-bz[j * nx + (i-2)]) )*0.5;         derx_bz[j * nx + i] = ( (3*bz[j * nx + i]) + (-4*bz[j * nx + (i-1)]) - (-bz[j * nx + (i-2)]) )*0.5;
     }     }
  
     j=0;     j=0;
     for (i = 0; i <= nx-1; i++)     for (i = 0; i <= nx-1; i++)
     {     {
         if isnan(bz[j * nx + i]) continue;  
         dery_bz[j * nx + i] = ( (-3*bz[j*nx + i]) + (4*bz[(j+1) * nx + i]) - (bz[(j+2) * nx + i]) )*0.5;         dery_bz[j * nx + i] = ( (-3*bz[j*nx + i]) + (4*bz[(j+1) * nx + i]) - (bz[(j+2) * nx + i]) )*0.5;
     }     }
  
     j=ny-1;     j=ny-1;
     for (i = 0; i <= nx-1; i++)     for (i = 0; i <= nx-1; i++)
     {     {
         if isnan(bz[j * nx + i]) continue;  
         dery_bz[j * nx + i] = ( (3*bz[j * nx + i]) + (-4*bz[(j-1) * nx + i]) - (-bz[(j-2) * nx + i]) )*0.5;         dery_bz[j * nx + i] = ( (3*bz[j * nx + i]) + (-4*bz[(j-1) * nx + i]) - (-bz[(j-2) * nx + i]) )*0.5;
     }     }
  
Line 509  int computeBzderivative(float *bz, float
Line 515  int computeBzderivative(float *bz, float
             if isnan(derx_bz[j * nx + i]) continue;             if isnan(derx_bz[j * nx + i]) continue;
             if isnan(dery_bz[j * nx + i]) continue;             if isnan(dery_bz[j * nx + i]) continue;
             sum += sqrt( derx_bz[j * nx + i]*derx_bz[j * nx + i]  + dery_bz[j * nx + i]*dery_bz[j * nx + i]  ); /* Units of Gauss */             sum += sqrt( derx_bz[j * nx + i]*derx_bz[j * nx + i]  + dery_bz[j * nx + i]*dery_bz[j * nx + i]  ); /* Units of Gauss */
             err += (((bz[(j+1) * nx + i]-bz[(j-1) * nx + i])*(bz[(j+1) * nx + i]-bz[(j-1) * nx + i])) * (bz_err[(j+1) * nx + i]*bz_err[(j+1) * nx + i] + bz_err[(j-1) * nx + i]*bz_err[(j-1) * nx + i])) /              err += err_term2[j * nx + i] / (16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i]  + dery_bz[j * nx + i]*dery_bz[j * nx + i]  )) +
             (16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i]  + dery_bz[j * nx + i]*dery_bz[j * nx + i]  )) +                     err_term1[j * nx + i] / (16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i]  + dery_bz[j * nx + i]*dery_bz[j * nx + i]  )) ;
             (((bz[j * nx + (i+1)]-bz[j * nx + (i-1)])*(bz[j * nx + (i+1)]-bz[j * nx + (i-1)])) * (bz_err[j * nx + (i+1)]*bz_err[j * nx + (i+1)] + bz_err[j * nx + (i-1)]*bz_err[j * nx + (i-1)])) /  
             (16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i]  + dery_bz[j * nx + i]*dery_bz[j * nx + i]  )) ;  
             count_mask++;             count_mask++;
         }         }
     }     }
Line 563  int computeBzderivative(float *bz, float
Line 567  int computeBzderivative(float *bz, float
 //              float *noiseby, float *noisebz) //              float *noiseby, float *noisebz)
  
 int computeJz(float *bx_err, float *by_err, float *bx, float *by, int *dims, float *jz, float *jz_err, float *jz_err_squared, int computeJz(float *bx_err, float *by_err, float *bx, float *by, int *dims, float *jz, float *jz_err, float *jz_err_squared,
               int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery)                int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery, float *err_term1, float *err_term2)
  
  
 { {
Line 582  int computeJz(float *bx_err, float *by_e
Line 586  int computeJz(float *bx_err, float *by_e
     {     {
             for (j = 0; j <= ny-1; j++)             for (j = 0; j <= ny-1; j++)
         {         {
             if isnan(by[j * nx + i]) continue;  
             derx[j * nx + i] = (by[j * nx + i+1] - by[j * nx + i-1])*0.5;             derx[j * nx + i] = (by[j * nx + i+1] - by[j * nx + i-1])*0.5;
              err_term1[j * nx + i] = (by_err[j * nx + i+1])*(by_err[j * nx + i+1]) + (by_err[j * nx + i-1])*(by_err[j * nx + i-1]);
         }         }
     }     }
  
Line 591  int computeJz(float *bx_err, float *by_e
Line 595  int computeJz(float *bx_err, float *by_e
     {     {
             for (j = 1; j <= ny-2; j++)             for (j = 1; j <= ny-2; j++)
         {         {
             if isnan(bx[j * nx + i]) continue;  
             dery[j * nx + i] = (bx[(j+1) * nx + i] - bx[(j-1) * nx + i])*0.5;             dery[j * nx + i] = (bx[(j+1) * nx + i] - bx[(j-1) * nx + i])*0.5;
              err_term2[j * nx + i] = (bx_err[(j+1) * nx + i])*(bx_err[(j+1) * nx + i]) + (bx_err[(j-1) * nx + i])*(bx_err[(j-1) * nx + i]);
         }         }
     }     }
  
     // consider the edges      /* consider the edges for the arrays that contribute to the variable "sum" in the computation below.
       ignore the edges for the error terms as those arrays have been initialized to zero.
       this is okay because the error term will ultimately not include the edge pixels as they are selected out by the mask and bitmask arrays.*/
   
     i=0;     i=0;
     for (j = 0; j <= ny-1; j++)     for (j = 0; j <= ny-1; j++)
     {     {
         if isnan(by[j * nx + i]) continue;  
         derx[j * nx + i] = ( (-3*by[j * nx + i]) + (4*by[j * nx + (i+1)]) - (by[j * nx + (i+2)]) )*0.5;         derx[j * nx + i] = ( (-3*by[j * nx + i]) + (4*by[j * nx + (i+1)]) - (by[j * nx + (i+2)]) )*0.5;
     }     }
  
     i=nx-1;     i=nx-1;
     for (j = 0; j <= ny-1; j++)     for (j = 0; j <= ny-1; j++)
     {     {
         if isnan(by[j * nx + i]) continue;  
         derx[j * nx + i] = ( (3*by[j * nx + i]) + (-4*by[j * nx + (i-1)]) - (-by[j * nx + (i-2)]) )*0.5;         derx[j * nx + i] = ( (3*by[j * nx + i]) + (-4*by[j * nx + (i-1)]) - (-by[j * nx + (i-2)]) )*0.5;
     }     }
  
     j=0;     j=0;
     for (i = 0; i <= nx-1; i++)     for (i = 0; i <= nx-1; i++)
     {     {
         if isnan(bx[j * nx + i]) continue;  
         dery[j * nx + i] = ( (-3*bx[j*nx + i]) + (4*bx[(j+1) * nx + i]) - (bx[(j+2) * nx + i]) )*0.5;         dery[j * nx + i] = ( (-3*bx[j*nx + i]) + (4*bx[(j+1) * nx + i]) - (bx[(j+2) * nx + i]) )*0.5;
     }     }
  
     j=ny-1;     j=ny-1;
     for (i = 0; i <= nx-1; i++)     for (i = 0; i <= nx-1; i++)
     {     {
         if isnan(bx[j * nx + i]) continue;  
         dery[j * nx + i] = ( (3*bx[j * nx + i]) + (-4*bx[(j-1) * nx + i]) - (-bx[(j-2) * nx + i]) )*0.5;         dery[j * nx + i] = ( (3*bx[j * nx + i]) + (-4*bx[(j-1) * nx + i]) - (-bx[(j-2) * nx + i]) )*0.5;
     }     }
  
     for (i = 1; i <= nx-2; i++)  
       for (i = 0; i <= nx-1; i++)
     {     {
         for (j = 1; j <= ny-2; j++)          for (j = 0; j <= ny-1; j++)
         {         {
             // calculate jz at all points             // calculate jz at all points
   
             jz[j * nx + i]            = (derx[j * nx + i]-dery[j * nx + i]);       // jz is in units of Gauss/pix             jz[j * nx + i]            = (derx[j * nx + i]-dery[j * nx + i]);       // jz is in units of Gauss/pix
             jz_err[j * nx + i]        = 0.5*sqrt( (bx_err[(j+1) * nx + i]*bx_err[(j+1) * nx + i]) + (bx_err[(j-1) * nx + i]*bx_err[(j-1) * nx + i]) +              jz_err[j * nx + i]        = 0.5*sqrt( err_term1[j * nx + i] + err_term2[j * nx + i] ) ;
                                                  (by_err[j * nx + (i+1)]*by_err[j * nx + (i+1)]) + (by_err[j * nx + (i-1)]*by_err[j * nx + (i-1)]) ) ;  
             jz_err_squared[j * nx + i]= (jz_err[j * nx + i]*jz_err[j * nx + i]);             jz_err_squared[j * nx + i]= (jz_err[j * nx + i]*jz_err[j * nx + i]);
             count_mask++;             count_mask++;
   
         }         }
     }     }
         return 0;         return 0;
Line 832  int computeHelicity(float *jz_err, float
Line 833  int computeHelicity(float *jz_err, float
 /* Example function 12:  Sum of Absolute Value per polarity  */ /* Example function 12:  Sum of Absolute Value per polarity  */
  
 //  The Sum of the Absolute Value per polarity is defined as the following: //  The Sum of the Absolute Value per polarity is defined as the following:
 //  fabs(sum(jz gt 0)) + fabs(sum(jz lt 0)) and the units are in Amperes.  //  fabs(sum(jz gt 0)) + fabs(sum(jz lt 0)) and the units are in Amperes per square arcsecond.
 //  The units of jz are in G/pix. In this case, we would have the following: //  The units of jz are in G/pix. In this case, we would have the following:
 //  Jz = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS)(RSUN_REF/RSUN_OBS)(RSUN_OBS/RSUN_REF), //  Jz = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS)(RSUN_REF/RSUN_OBS)(RSUN_OBS/RSUN_REF),
 //     = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS) //     = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS)
Line 869  int computeSumAbsPerPolarity(float *jz_e
Line 870  int computeSumAbsPerPolarity(float *jz_e
         }         }
     }     }
  
         *totaljzptr    = fabs(sum1) + fabs(sum2);  /* Units are A */      *totaljzptr    = fabs(sum1) + fabs(sum2);  /* Units are Amperes per arcsecond */
     *totaljz_err_ptr = sqrt(err)*(1/cdelt1)*fabs((0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs));     *totaljz_err_ptr = sqrt(err)*(1/cdelt1)*fabs((0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs));
     //printf("SAVNCPP=%g\n",*totaljzptr);     //printf("SAVNCPP=%g\n",*totaljzptr);
     //printf("SAVNCPP_err=%g\n",*totaljz_err_ptr);     //printf("SAVNCPP_err=%g\n",*totaljz_err_ptr);
Line 991  int computeShearAngle(float *bx_err, flo
Line 992  int computeShearAngle(float *bx_err, flo
             dotproduct            = (bpx[j * nx + i])*(bx[j * nx + i]) + (bpy[j * nx + i])*(by[j * nx + i]) + (bpz[j * nx + i])*(bz[j * nx + i]);             dotproduct            = (bpx[j * nx + i])*(bx[j * nx + i]) + (bpy[j * nx + i])*(by[j * nx + i]) + (bpz[j * nx + i])*(bz[j * nx + i]);
             magnitude_potential   = sqrt( (bpx[j * nx + i]*bpx[j * nx + i]) + (bpy[j * nx + i]*bpy[j * nx + i]) + (bpz[j * nx + i]*bpz[j * nx + i]));             magnitude_potential   = sqrt( (bpx[j * nx + i]*bpx[j * nx + i]) + (bpy[j * nx + i]*bpy[j * nx + i]) + (bpz[j * nx + i]*bpz[j * nx + i]));
             magnitude_vector      = sqrt( (bx[j * nx + i]*bx[j * nx + i])   + (by[j * nx + i]*by[j * nx + i])   + (bz[j * nx + i]*bz[j * nx + i]) );             magnitude_vector      = sqrt( (bx[j * nx + i]*bx[j * nx + i])   + (by[j * nx + i]*by[j * nx + i])   + (bz[j * nx + i]*bz[j * nx + i]) );
   
               //printf("i,j=%d,%d\n",i,j);
             //printf("dotproduct=%f\n",dotproduct);             //printf("dotproduct=%f\n",dotproduct);
             //printf("magnitude_potential=%f\n",magnitude_potential);             //printf("magnitude_potential=%f\n",magnitude_potential);
             //printf("magnitude_vector=%f\n",magnitude_vector);             //printf("magnitude_vector=%f\n",magnitude_vector);
               //printf("dotproduct/(magnitude_potential*magnitude_vector)=%f\n",dotproduct/(magnitude_potential*magnitude_vector));
               //printf("acos(dotproduct/(magnitude_potential*magnitude_vector))=%f\n",acos(dotproduct/(magnitude_potential*magnitude_vector)));
               //printf("acos(dotproduct/(magnitude_potential*magnitude_vector)*(180./PI))=%f\n",acos(dotproduct/(magnitude_potential*magnitude_vector))*(180./PI));
  
             shear_angle            = acos(dotproduct/(magnitude_potential*magnitude_vector))*(180./PI);             shear_angle            = acos(dotproduct/(magnitude_potential*magnitude_vector))*(180./PI);
             sumsum                  += shear_angle;             sumsum                  += shear_angle;
Line 1160  int computeR(float *bz_err, float *los,
Line 1166  int computeR(float *bz_err, float *los,
         for (j = 0; j < ny1; j++)         for (j = 0; j < ny1; j++)
         {         {
             index = j * nx1 + i;             index = j * nx1 + i;
               if isnan(pmapn[index]) continue;
               if isnan(rim[index]) continue;
             sum += pmapn[index]*abs(rim[index]);             sum += pmapn[index]*abs(rim[index]);
         }         }
     }     }
Line 1169  int computeR(float *bz_err, float *los,
Line 1177  int computeR(float *bz_err, float *los,
     else     else
         *Rparam = log10(sum);         *Rparam = log10(sum);
  
       //printf("R_VALUE=%f\n",*Rparam);
   
     free_fresize(&fresboxcar);     free_fresize(&fresboxcar);
     free_fresize(&fresgauss);     free_fresize(&fresgauss);
  
Line 1201  int computeLorentz(float *bx, float *by
Line 1211  int computeLorentz(float *bx, float *by
     double k_h = -1.0 * area / (4. * PI) / 1.0e20;     double k_h = -1.0 * area / (4. * PI) / 1.0e20;
     double k_z = area / (8. * PI) / 1.0e20;     double k_z = area / (8. * PI) / 1.0e20;
  
     /* Multiplier */  
     float vectorMulti[] = {1.,-1.,1.};  
   
     if (nx <= 0 || ny <= 0) return 1;     if (nx <= 0 || ny <= 0) return 1;
  
     for (int i = 0; i < nxny; i++)     for (int i = 0; i < nxny; i++)
Line 1212  int computeLorentz(float *bx, float *by
Line 1219  int computeLorentz(float *bx, float *by
        if isnan(bx[i]) continue;        if isnan(bx[i]) continue;
        if isnan(by[i]) continue;        if isnan(by[i]) continue;
        if isnan(bz[i]) continue;        if isnan(bz[i]) continue;
        fx[i]  = (bx[i] * vectorMulti[0]) * (bz[i] * vectorMulti[2]) * k_h;         fx[i]  = bx[i] * bz[i] * k_h;
        fy[i]  = (by[i] * vectorMulti[1]) * (bz[i] * vectorMulti[2]) * k_h;         fy[i]  = by[i] * bz[i] * k_h;
        fz[i]  = (bx[i] * bx[i] + by[i] * by[i] - bz[i] * bz[i]) * k_z;        fz[i]  = (bx[i] * bx[i] + by[i] * by[i] - bz[i] * bz[i]) * k_z;
        bsq    = bx[i] * bx[i] + by[i] * by[i] + bz[i] * bz[i];        bsq    = bx[i] * bx[i] + by[i] * by[i] + bz[i] * bz[i];
        totfx  += fx[i]; totfy += fy[i]; totfz += fz[i];        totfx  += fx[i]; totfy += fy[i]; totfz += fz[i];
Line 1228  int computeLorentz(float *bx, float *by
Line 1235  int computeLorentz(float *bx, float *by
     *epsy_ptr   = (totfy / k_h) / totbsq;     *epsy_ptr   = (totfy / k_h) / totbsq;
     *epsz_ptr   = (totfz / k_z) / totbsq;     *epsz_ptr   = (totfz / k_z) / totbsq;
  
       //printf("TOTBSQ=%f\n",*totbsq_ptr);
   
     return 0;     return 0;
  
 } }
Line 1313  void greenpot(float *bx, float *by, floa
Line 1322  void greenpot(float *bx, float *by, floa
             i2e = inx + iwindow;             i2e = inx + iwindow;
             if (i2s <   0){i2s =   0;}             if (i2s <   0){i2s =   0;}
             if (i2e > nnx){i2e = nnx;}             if (i2e > nnx){i2e = nnx;}
               //            for (j2=j2s;j2<j2e;j2++){for (i2=i2s;i2<i2e;i2++)
             for (j2=j2s;j2<j2e;j2++){for (i2=i2s;i2<i2e;i2++)              for (j2=j2s;j2<2;j2++){for (i2=i2s;i2<2;i2++)
             {             {
                 float val1 = bztmp[nnx*j2 + i2];                 float val1 = bztmp[nnx*j2 + i2];
                 float rr, r1, r2;  
                 //        r1 = (float)(i2 - inx);  
                 //        r2 = (float)(j2 - iny);  
                 //        rr = r1*r1 + r2*r2;  
                 //        if (rr < rwindow)  
                 //        {  
                 int   di, dj;                 int   di, dj;
                 di = abs(i2 - inx);                 di = abs(i2 - inx);
                 dj = abs(j2 - iny);                 dj = abs(j2 - iny);
                 sum = sum + val1 * rdist[nnx * dj + di] * dz;                 sum = sum + val1 * rdist[nnx * dj + di] * dz;
                 //        }                  printf("sum,val1,rdist[nnx * dj + di]=%f,%f,%f\n",sum,val1,rdist[nnx * dj + di]);
             } }             } }
             pfpot[nnx*iny + inx] = sum; // Note that this is a simplified definition.             pfpot[nnx*iny + inx] = sum; // Note that this is a simplified definition.
         }         }
     } } // end of OpenMP parallelism     } } // end of OpenMP parallelism
  
       printf("bztmp[0]=%f\n",bztmp[0]);
       printf("bztmp[91746]=%f\n",bztmp[91746]);
       printf("pfpot[0]=%f\n",pfpot[0]);
       printf("pfpot[91746]=%f\n",pfpot[91746]);
   
     // #pragma omp parallel for private(inx)     // #pragma omp parallel for private(inx)
     for (iny=1; iny < nny - 1; iny++){for (inx=1; inx < nnx - 1; inx++)     for (iny=1; iny < nny - 1; iny++){for (inx=1; inx < nnx - 1; inx++)
     {     {
Line 1340  void greenpot(float *bx, float *by, floa
Line 1348  void greenpot(float *bx, float *by, floa
         by[nnx*iny + inx] = -(pfpot[nnx*(iny+1) + inx]-pfpot[nnx*(iny-1) + inx]) * 0.5;         by[nnx*iny + inx] = -(pfpot[nnx*(iny+1) + inx]-pfpot[nnx*(iny-1) + inx]) * 0.5;
     } } // end of OpenMP parallelism     } } // end of OpenMP parallelism
  
       printf("bx[0]=%f\n",bx[0]);
       printf("by[0]=%f\n",by[0]);
       printf("bx[91746]=%f\n",bx[91746]);
       printf("by[91746]=%f\n",by[91746]);
     free(rdist);     free(rdist);
     free(pfpot);     free(pfpot);
     free(bztmp);     free(bztmp);
Line 1353  char *sw_functions_version() // Returns
Line 1365  char *sw_functions_version() // Returns
     return strdup("$Id");     return strdup("$Id");
 } }
  
   
 /* ---------------- end of this file ----------------*/ /* ---------------- end of this file ----------------*/


Legend:
Removed from v.1.31  
changed lines
  Added in v.1.36

Karen Tian
Powered by
ViewCVS 0.9.4