version 1.9, 2013/05/20 23:55:32
|
version 1.31, 2014/06/05 21:27:04
|
|
|
MEANPOT Mean photospheric excess magnetic energy density in ergs per cubic centimeter | MEANPOT Mean photospheric excess magnetic energy density in ergs per cubic centimeter |
TOTPOT Total photospheric magnetic energy density in ergs per cubic centimeter | TOTPOT Total photospheric magnetic energy density in ergs per cubic centimeter |
MEANSHR Mean shear angle (measured using Btotal) in degrees | MEANSHR Mean shear angle (measured using Btotal) in degrees |
|
R_VALUE Karel Schrijver's R parameter |
| |
The indices are calculated on the pixels in which the conf_disambig segment is greater than 70 and | The indices are calculated on the pixels in which the conf_disambig segment is greater than 70 and |
pixels in which the bitmap segment is greater than 30. These ranges are selected because the CCD | pixels in which the bitmap segment is greater than 30. These ranges are selected because the CCD |
coordinate bitmaps are interpolated. |
coordinate bitmaps are interpolated for certain data (at the time of this CVS submit, all data |
|
prior to 2013.08.21_17:24:00_TAI contain interpolated bitmaps; data post-2013.08.21_17:24:00_TAI |
|
contain nearest-neighbor bitmaps). |
| |
In the CCD coordinates, this means that we are selecting the pixels that equal 90 in conf_disambig | In the CCD coordinates, this means that we are selecting the pixels that equal 90 in conf_disambig |
and the pixels that equal 33 or 44 in bitmap. Here are the definitions of the pixel values: |
and the pixels that equal 33 or 34 in bitmap. Here are the definitions of the pixel values: |
| |
For conf_disambig: | For conf_disambig: |
50 : not all solutions agree (weak field method applied) | 50 : not all solutions agree (weak field method applied) |
|
|
| |
Written by Monica Bobra 15 August 2012 | Written by Monica Bobra 15 August 2012 |
Potential Field code (appended) written by Keiji Hayashi | Potential Field code (appended) written by Keiji Hayashi |
|
Error analysis modification 21 October 2013 |
| |
===========================================*/ | ===========================================*/ |
#include <math.h> | #include <math.h> |
|
|
// To convert G to G*cm^2, simply multiply by the number of square centimeters per pixel. | // To convert G to G*cm^2, simply multiply by the number of square centimeters per pixel. |
// As an order of magnitude estimate, we can assign 0.5 to CDELT1 and 722500m/arcsec to (RSUN_REF/RSUN_OBS). | // As an order of magnitude estimate, we can assign 0.5 to CDELT1 and 722500m/arcsec to (RSUN_REF/RSUN_OBS). |
// (Gauss/pix^2)(CDELT1)^2(RSUN_REF/RSUN_OBS)^2(100.cm/m)^2 | // (Gauss/pix^2)(CDELT1)^2(RSUN_REF/RSUN_OBS)^2(100.cm/m)^2 |
// =(Gauss/pix^2)(0.5 arcsec/pix)^2(722500m/arcsec)^2(100cm/m)^2 |
// =Gauss*cm^2 |
// =(1.30501e15)Gauss*cm^2 |
|
|
|
// The disambig mask value selects only the pixels with values of 5 or 7 -- that is, |
|
// 5: pixels for which the radial acute disambiguation solution was chosen |
|
// 7: pixels for which the radial acute and NRWA disambiguation agree |
|
| |
int computeAbsFlux(float *bz_err, float *bz, int *dims, float *absFlux, | int computeAbsFlux(float *bz_err, float *bz, int *dims, float *absFlux, |
float *mean_vf_ptr, float *mean_vf_err_ptr, float *count_mask_ptr, int *mask, | float *mean_vf_ptr, float *mean_vf_err_ptr, float *count_mask_ptr, int *mask, |
Line 73 int computeAbsFlux(float *bz_err, float |
|
Line 72 int computeAbsFlux(float *bz_err, float |
|
| |
{ | { |
| |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask=0; |
int ny = dims[1]; |
double sum,err=0.0; |
int i = 0; |
|
int j = 0; |
if (nx <= 0 || ny <= 0) return 1; |
int count_mask = 0; |
|
double sum = 0.0; |
|
double err = 0.0; |
*absFlux = 0.0; | *absFlux = 0.0; |
*mean_vf_ptr =0.0; | *mean_vf_ptr =0.0; |
| |
|
|
|
if (nx <= 0 || ny <= 0) return 1; |
|
|
for (i = 0; i < nx; i++) | for (i = 0; i < nx; i++) |
{ | { |
for (j = 0; j < ny; j++) | for (j = 0; j < ny; j++) |
Line 97 int computeAbsFlux(float *bz_err, float |
|
Line 100 int computeAbsFlux(float *bz_err, float |
|
*mean_vf_ptr = sum*cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0; | *mean_vf_ptr = sum*cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0; |
*mean_vf_err_ptr = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0); // error in the unsigned flux | *mean_vf_err_ptr = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0); // error in the unsigned flux |
*count_mask_ptr = count_mask; | *count_mask_ptr = count_mask; |
printf("CMASK=%g\n",*count_mask_ptr); |
|
printf("USFLUX=%g\n",*mean_vf_ptr); |
|
printf("sum=%f\n",sum); |
|
printf("USFLUX_err=%g\n",*mean_vf_err_ptr); |
|
return 0; | return 0; |
} | } |
| |
Line 113 int computeBh(float *bx_err, float *by_e |
|
Line 112 int computeBh(float *bx_err, float *by_e |
|
| |
{ | { |
| |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask=0; |
int ny = dims[1]; |
float sum=0.0; |
int i = 0; |
|
int j = 0; |
|
int count_mask = 0; |
|
double sum = 0.0; |
*mean_hf_ptr = 0.0; | *mean_hf_ptr = 0.0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
Line 124 int computeBh(float *bx_err, float *by_e |
|
Line 126 int computeBh(float *bx_err, float *by_e |
|
{ | { |
for (j = 0; j < ny; j++) | for (j = 0; j < ny; j++) |
{ | { |
if isnan(bx[j * nx + i]) continue; |
if isnan(bx[j * nx + i]) |
if isnan(by[j * nx + i]) continue; |
{ |
|
bh[j * nx + i] = NAN; |
|
bh_err[j * nx + i] = NAN; |
|
continue; |
|
} |
|
if isnan(by[j * nx + i]) |
|
{ |
|
bh[j * nx + i] = NAN; |
|
bh_err[j * nx + i] = NAN; |
|
continue; |
|
} |
bh[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] ); | bh[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] ); |
sum += bh[j * nx + i]; | sum += bh[j * nx + i]; |
bh_err[j * nx + i]=sqrt( bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i] + by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i])/ bh[j * nx + i]; | bh_err[j * nx + i]=sqrt( bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i] + by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i])/ bh[j * nx + i]; |
Line 141 int computeBh(float *bx_err, float *by_e |
|
Line 153 int computeBh(float *bx_err, float *by_e |
|
/*===========================================*/ | /*===========================================*/ |
/* Example function 3: Calculate Gamma in units of degrees */ | /* Example function 3: Calculate Gamma in units of degrees */ |
// Native units of atan(x) are in radians; to convert from radians to degrees, multiply by (180./PI) | // Native units of atan(x) are in radians; to convert from radians to degrees, multiply by (180./PI) |
// Redo calculation in radians for error analysis (since derivatives are only true in units of radians). |
// |
|
// Error analysis calculations are done in radians (since derivatives are only true in units of radians), |
|
// and multiplied by (180./PI) at the end for consistency in units. |
| |
int computeGamma(float *bz_err, float *bh_err, float *bx, float *by, float *bz, float *bh, int *dims, | int computeGamma(float *bz_err, float *bh_err, float *bx, float *by, float *bz, float *bh, int *dims, |
float *mean_gamma_ptr, float *mean_gamma_err_ptr, int *mask, int *bitmask) | float *mean_gamma_ptr, float *mean_gamma_err_ptr, int *mask, int *bitmask) |
{ | { |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask=0; |
int ny = dims[1]; |
|
int i = 0; |
if (nx <= 0 || ny <= 0) return 1; |
int j = 0; |
|
int count_mask = 0; |
|
double sum = 0.0; |
|
double err = 0.0; |
*mean_gamma_ptr=0.0; | *mean_gamma_ptr=0.0; |
float sum,err,err_value=0.0; |
|
| |
|
if (nx <= 0 || ny <= 0) return 1; |
| |
for (i = 0; i < nx; i++) | for (i = 0; i < nx; i++) |
{ | { |
Line 165 int computeGamma(float *bz_err, float *b |
|
Line 181 int computeGamma(float *bz_err, float *b |
|
if isnan(bz[j * nx + i]) continue; | if isnan(bz[j * nx + i]) continue; |
if isnan(bz_err[j * nx + i]) continue; | if isnan(bz_err[j * nx + i]) continue; |
if isnan(bh_err[j * nx + i]) continue; | if isnan(bh_err[j * nx + i]) continue; |
|
if isnan(bh[j * nx + i]) continue; |
if (bz[j * nx + i] == 0) continue; | if (bz[j * nx + i] == 0) continue; |
sum += (atan(fabs(bz[j * nx + i]/bh[j * nx + i] )))*(180./PI); |
sum += fabs(atan(bh[j * nx + i]/fabs(bz[j * nx + i])))*(180./PI); |
err += (( sqrt ( ((bz_err[j * nx + i]*bz_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i])) + ((bh_err[j * nx + i]*bh_err[j * nx + i])/(bh[j * nx + i]*bh[j * nx + i]))) * fabs(bz[j * nx + i]/bh[j * nx + i]) ) / (1 + (bz[j * nx + i]/bh[j * nx + i])*(bz[j * nx + i]/bh[j * nx + i]))) *(180./PI); |
err += (1/(1+((bh[j * nx + i]*bh[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i]))))*(1/(1+((bh[j * nx + i]*bh[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i])))) * |
|
( ((bh_err[j * nx + i]*bh_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i])) + |
|
((bh[j * nx + i]*bh[j * nx + i]*bz_err[j * nx + i]*bz_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i]*bz[j * nx + i]*bz[j * nx + i])) ); |
count_mask++; | count_mask++; |
} | } |
} | } |
} | } |
| |
*mean_gamma_ptr = sum/count_mask; | *mean_gamma_ptr = sum/count_mask; |
*mean_gamma_err_ptr = (sqrt(err*err))/(count_mask*100.); // error in the quantity (sum)/(count_mask) |
*mean_gamma_err_ptr = (sqrt(err)/(count_mask))*(180./PI); |
printf("MEANGAM=%f\n",*mean_gamma_ptr); |
//printf("MEANGAM=%f\n",*mean_gamma_ptr); |
printf("MEANGAM_err=%f\n",*mean_gamma_err_ptr); |
//printf("MEANGAM_err=%f\n",*mean_gamma_err_ptr); |
return 0; | return 0; |
} | } |
| |
Line 187 int computeGamma(float *bz_err, float *b |
|
Line 206 int computeGamma(float *bz_err, float *b |
|
int computeB_total(float *bx_err, float *by_err, float *bz_err, float *bt_err, float *bx, float *by, float *bz, float *bt, int *dims, int *mask, int *bitmask) | int computeB_total(float *bx_err, float *by_err, float *bz_err, float *bt_err, float *bx, float *by, float *bz, float *bt, int *dims, int *mask, int *bitmask) |
{ | { |
| |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask=0; |
int ny = dims[1]; |
|
int i = 0; |
|
int j = 0; |
|
int count_mask = 0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
| |
Line 196 int computeB_total(float *bx_err, float |
|
Line 218 int computeB_total(float *bx_err, float |
|
{ | { |
for (j = 0; j < ny; j++) | for (j = 0; j < ny; j++) |
{ | { |
if isnan(bx[j * nx + i]) continue; |
if isnan(bx[j * nx + i]) |
if isnan(by[j * nx + i]) continue; |
{ |
if isnan(bz[j * nx + i]) continue; |
bt[j * nx + i] = NAN; |
|
bt_err[j * nx + i] = NAN; |
|
continue; |
|
} |
|
if isnan(by[j * nx + i]) |
|
{ |
|
bt[j * nx + i] = NAN; |
|
bt_err[j * nx + i] = NAN; |
|
continue; |
|
} |
|
if isnan(bz[j * nx + i]) |
|
{ |
|
bt[j * nx + i] = NAN; |
|
bt_err[j * nx + i] = NAN; |
|
continue; |
|
} |
bt[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]); | bt[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]); |
bt_err[j * nx + i]=sqrt(bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i] + by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]*bz_err[j * nx + i]*bz_err[j * nx + i] )/bt[j * nx + i]; | bt_err[j * nx + i]=sqrt(bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i] + by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]*bz_err[j * nx + i]*bz_err[j * nx + i] )/bt[j * nx + i]; |
} | } |
Line 212 int computeB_total(float *bx_err, float |
|
Line 249 int computeB_total(float *bx_err, float |
|
int computeBtotalderivative(float *bt, int *dims, float *mean_derivative_btotal_ptr, int *mask, int *bitmask, float *derx_bt, float *dery_bt, float *bt_err, float *mean_derivative_btotal_err_ptr) | int computeBtotalderivative(float *bt, int *dims, float *mean_derivative_btotal_ptr, int *mask, int *bitmask, float *derx_bt, float *dery_bt, float *bt_err, float *mean_derivative_btotal_err_ptr) |
{ | { |
| |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask=0; |
int ny = dims[1]; |
|
int i = 0; |
if (nx <= 0 || ny <= 0) return 1; |
int j = 0; |
|
int count_mask = 0; |
|
double sum = 0.0; |
|
double err = 0.0; |
*mean_derivative_btotal_ptr = 0.0; | *mean_derivative_btotal_ptr = 0.0; |
float sum, err = 0.0; |
|
| |
|
if (nx <= 0 || ny <= 0) return 1; |
| |
/* brute force method of calculating the derivative (no consideration for edges) */ | /* brute force method of calculating the derivative (no consideration for edges) */ |
for (i = 3; i <= nx-4; i++) |
for (i = 1; i <= nx-2; i++) |
{ | { |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
derx_bt[j * nx + i] = (-bt[j * nx + (i-3)] + 9.0*bt[j * nx + (i-2)] - 45.0*bt[j * nx + (i-1)] + 45*bt[j * nx + (i+1)] - 9.0*bt[j * nx + (i+2)] + bt[j * nx + (i+3)])*(1.0/60.0); |
derx_bt[j * nx + i] = (bt[j * nx + i+1] - bt[j * nx + i-1])*0.5; |
} | } |
} | } |
| |
/* brute force method of calculating the derivative (no consideration for edges) */ | /* brute force method of calculating the derivative (no consideration for edges) */ |
for (i = 0; i <= nx-1; i++) | for (i = 0; i <= nx-1; i++) |
{ | { |
for (j = 3; j <= ny-4; j++) |
for (j = 1; j <= ny-2; j++) |
{ | { |
dery_bt[j * nx + i] = (-bt[(j-3) * nx + i] + 9.0*bt[(j-2) * nx + i] - 45.0*bt[(j-1) * nx + i] + 45*bt[(j+1) * nx + i] - 9.0*bt[(j+2) * nx + i] + bt[(j+3) * nx + i])*(1.0/60.0); |
dery_bt[j * nx + i] = (bt[(j+1) * nx + i] - bt[(j-1) * nx + i])*0.5; |
} | } |
} | } |
| |
| |
/* consider the edges: 3 pixels on each edge, for a total of 12 edge formulae below */ |
/* consider the edges */ |
i=0; | i=0; |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
derx_bt[j * nx + i] = (-147.0*bt[j * nx + i] + 360.0*bt[j * nx + (i+1)] - 450.0*bt[j * nx + (i+2)] + 400.0*bt[j * nx + (i+3)] - 225.0*bt[j * nx + (i+4)] + 72.0*bt[j * nx + (i+5)] - 10.0*bt[j * nx + (i+6)])*(1.0/60.0); |
derx_bt[j * nx + i] = ( (-3*bt[j * nx + i]) + (4*bt[j * nx + (i+1)]) - (bt[j * nx + (i+2)]) )*0.5; |
} | } |
| |
i=nx-1; | i=nx-1; |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
derx_bt[j * nx + i] = ( 147.0*bt[j * nx + i] - 360.0*bt[j * nx + (i-1)] + 450.0*bt[j * nx + (i-2)] - 400.0*bt[j * nx + (i-3)] + 225.0*bt[j * nx + (i-4)] - 72.0*bt[j * nx + (i-5)] + 10.0*bt[j * nx + (i-6)])*(1.0/60.0); |
derx_bt[j * nx + i] = ( (3*bt[j * nx + i]) + (-4*bt[j * nx + (i-1)]) - (-bt[j * nx + (i-2)]) )*0.5; |
} | } |
| |
|
|
i=1; |
|
for (j = 0; j <= ny-2; j++) |
|
{ |
|
derx_bt[j * nx + i] = (-10.0*bt[j * nx + i] - 77.0*bt[j * nx + (i+1)] + 150.0*bt[j * nx + (i+2)] - 100.0*bt[j * nx + (i+3)] + 50.0*bt[j * nx + (i+4)] - 15.0*bt[j * nx + (i+5)] + 2.0*bt[j * nx + (i+6)])*(1.0/60.0); |
|
} |
|
|
|
i=nx-2; |
|
for (j = 0; j <= ny-2; j++) |
|
{ |
|
derx_bt[j * nx + i] = ( 10.0*bt[j * nx + i] + 77.0*bt[j * nx + (i-1)] - 150.0*bt[j * nx + (i-2)] + 100.0*bt[j * nx + (i-3)] - 50.0*bt[j * nx + (i-4)] + 15.0*bt[j * nx + (i-5)] - 2.0*bt[j * nx + (i-6)])*(1.0/60.0); |
|
} |
|
|
|
|
|
i=2; |
|
for (j = 0; j <= ny-2; j++) |
|
{ |
|
derx_bt[j * nx + i] = ( 2.0*bt[j * nx + i] - 24.0*bt[j * nx + (i+1)] - 35.0*bt[j * nx + (i+2)] + 80.0*bt[j * nx + (i+3)] - 30.0*bt[j * nx + (i+4)] + 8.0*bt[j * nx + (i+5)] - bt[j * nx + (i+6)])*(1.0/60.0); |
|
} |
|
|
|
i=nx-3; |
|
for (j = 0; j <= ny-2; j++) |
|
{ |
|
derx_bt[j * nx + i] = (-2.0*bt[j * nx + i] + 24.0*bt[j * nx + (i-1)] + 35.0*bt[j * nx + (i-2)] - 80.0*bt[j * nx + (i-3)] + 30.0*bt[j * nx + (i-4)] - 8.0*bt[j * nx + (i-5)] + bt[j * nx + (i-6)])*(1.0/60.0); |
|
} |
|
|
|
|
|
j=0; | j=0; |
for (i = 0; i <= nx-1; i++) | for (i = 0; i <= nx-1; i++) |
{ | { |
dery_bt[j * nx + i] = (-147.0*bt[j * nx + i] + 360.0*bt[(j+1) * nx + i] - 450.0*bt[(j+2) * nx + i] + 400.0*bt[(j+3) * nx + i] - 225.0*bt[(j+4) * nx + i] + 72.0*bt[(j+5) * nx + i] - 10.0*bt[(j+6) * nx + i])*(1.0/60.0); |
dery_bt[j * nx + i] = ( (-3*bt[j*nx + i]) + (4*bt[(j+1) * nx + i]) - (bt[(j+2) * nx + i]) )*0.5; |
} | } |
| |
j=ny-1; | j=ny-1; |
for (i = 0; i <= nx-1; i++) | for (i = 0; i <= nx-1; i++) |
{ | { |
dery_bt[j * nx + i] = ( 147.0*bt[j * nx + i] - 360.0*bt[(j-1) * nx + i] + 450.0*bt[(j-2) * nx + i] - 400.0*bt[(j-3) * nx + i] + 225.0*bt[(j-4) * nx + i] - 72.0*bt[(j-5) * nx + i] + 10.0*bt[(j-6) * nx + i])*(1.0/60.0); |
dery_bt[j * nx + i] = ( (3*bt[j * nx + i]) + (-4*bt[(j-1) * nx + i]) - (-bt[(j-2) * nx + i]) )*0.5; |
} |
|
|
|
j=1; |
|
for (i = 0; i <= nx-2; i++) |
|
{ |
|
dery_bt[j * nx + i] = (-10.0*bt[j * nx + i] - 77.0*bt[(j+1) * nx + i] + 150.0*bt[(j+2) * nx + i] - 100.0*bt[(j+3) * nx + i] + 50.0*bt[(j+4) * nx + i] - 15.0*bt[(j+5) * nx + i] + 2.0*bt[(j+6) * nx + i])*(1.0/60.0); |
|
} |
|
|
|
j=ny-2; |
|
for (i = 0; i <= nx-2; i++) |
|
{ |
|
dery_bt[j * nx + i] = ( 10.0*bt[j * nx + i] + 77.0*bt[(j-1) * nx + i] - 150.0*bt[(j-2) * nx + i] + 100.0*bt[(j-3) * nx + i] - 50.0*bt[(j-4) * nx + i] + 15.0*bt[(j-5) * nx + i] - 2.0*bt[(j-6) * nx + i])*(1.0/60.0); |
|
} |
|
|
|
j=2; |
|
for (i = 0; i <= nx-3; i++) |
|
{ |
|
dery_bt[j * nx + i] = ( 2.0*bt[j * nx + i] - 24.0*bt[(j+1) * nx + i] - 35.0*bt[(j+2) * nx + i] + 80.0*bt[(j+3) * nx + i] - 30.0*bt[(j+4) * nx + i] + 8.0*bt[(j+5) * nx + i] - bt[(j+6) * nx + i])*(1.0/60.0); |
|
} |
|
|
|
j=ny-3; |
|
for (i = 0; i <= nx-3; i++) |
|
{ |
|
dery_bt[j * nx + i] = (-2.0*bt[j * nx + i] + 24.0*bt[(j-1) * nx + i] + 35.0*bt[(j-2) * nx + i] - 80.0*bt[(j-3) * nx + i] + 30.0*bt[(j-4) * nx + i] - 8.0*bt[(j-5) * nx + i] + bt[(j-6) * nx + i])*(1.0/60.0); |
|
} | } |
| |
| |
for (i = 0; i <= nx-1; i++) |
for (i = 1; i <= nx-2; i++) |
{ | { |
for (j = 0; j <= ny-1; j++) |
for (j = 1; j <= ny-2; j++) |
{ | { |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
|
if ( (derx_bt[j * nx + i] + dery_bt[j * nx + i]) == 0) continue; |
|
if isnan(bt[j * nx + i]) continue; |
|
if isnan(bt[(j+1) * nx + i]) continue; |
|
if isnan(bt[(j-1) * nx + i]) continue; |
|
if isnan(bt[j * nx + i-1]) continue; |
|
if isnan(bt[j * nx + i+1]) continue; |
|
if isnan(bt_err[j * nx + i]) continue; |
if isnan(derx_bt[j * nx + i]) continue; | if isnan(derx_bt[j * nx + i]) continue; |
if isnan(dery_bt[j * nx + i]) continue; | if isnan(dery_bt[j * nx + i]) continue; |
sum += sqrt( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] ); /* Units of Gauss */ | sum += sqrt( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] ); /* Units of Gauss */ |
err += (2.0)*bt_err[j * nx + i]*bt_err[j * nx + i]; |
err += (((bt[(j+1) * nx + i]-bt[(j-1) * nx + i])*(bt[(j+1) * nx + i]-bt[(j-1) * nx + i])) * (bt_err[(j+1) * nx + i]*bt_err[(j+1) * nx + i] + bt_err[(j-1) * nx + i]*bt_err[(j-1) * nx + i])) / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] ))+ |
|
(((bt[j * nx + (i+1)]-bt[j * nx + (i-1)])*(bt[j * nx + (i+1)]-bt[j * nx + (i-1)])) * (bt_err[j * nx + (i+1)]*bt_err[j * nx + (i+1)] + bt_err[j * nx + (i-1)]*bt_err[j * nx + (i-1)])) / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] )) ; |
count_mask++; | count_mask++; |
} | } |
} | } |
| |
*mean_derivative_btotal_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram |
*mean_derivative_btotal_ptr = (sum)/(count_mask); |
*mean_derivative_btotal_err_ptr = (sqrt(err))/(count_mask); // error in the quantity (sum)/(count_mask) |
*mean_derivative_btotal_err_ptr = (sqrt(err))/(count_mask); |
printf("MEANGBT=%f\n",*mean_derivative_btotal_ptr); |
//printf("MEANGBT=%f\n",*mean_derivative_btotal_ptr); |
printf("MEANGBT_err=%f\n",*mean_derivative_btotal_err_ptr); |
//printf("MEANGBT_err=%f\n",*mean_derivative_btotal_err_ptr); |
|
|
return 0; | return 0; |
} | } |
| |
Line 344 int computeBtotalderivative(float *bt, i |
|
Line 341 int computeBtotalderivative(float *bt, i |
|
int computeBhderivative(float *bh, float *bh_err, int *dims, float *mean_derivative_bh_ptr, float *mean_derivative_bh_err_ptr, int *mask, int *bitmask, float *derx_bh, float *dery_bh) | int computeBhderivative(float *bh, float *bh_err, int *dims, float *mean_derivative_bh_ptr, float *mean_derivative_bh_err_ptr, int *mask, int *bitmask, float *derx_bh, float *dery_bh) |
{ | { |
| |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask=0; |
int ny = dims[1]; |
|
int i = 0; |
|
int j = 0; |
|
int count_mask = 0; |
|
double sum= 0.0; |
|
double err =0.0; |
|
*mean_derivative_bh_ptr = 0.0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
| |
*mean_derivative_bh_ptr = 0.0; |
|
float sum,err = 0.0; |
|
|
|
/* brute force method of calculating the derivative (no consideration for edges) */ | /* brute force method of calculating the derivative (no consideration for edges) */ |
for (i = 3; i <= nx-4; i++) |
for (i = 1; i <= nx-2; i++) |
{ | { |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
derx_bh[j * nx + i] = (-bh[j * nx + (i-3)] + 9.0*bh[j * nx + (i-2)] - 45.0*bh[j * nx + (i-1)] + 45*bh[j * nx + (i+1)] - 9.0*bh[j * nx + (i+2)] + bh[j * nx + (i+3)])*(1.0/60.0); |
derx_bh[j * nx + i] = (bh[j * nx + i+1] - bh[j * nx + i-1])*0.5; |
} | } |
} | } |
| |
/* brute force method of calculating the derivative (no consideration for edges) */ | /* brute force method of calculating the derivative (no consideration for edges) */ |
for (i = 0; i <= nx-1; i++) | for (i = 0; i <= nx-1; i++) |
{ | { |
for (j = 3; j <= ny-4; j++) |
for (j = 1; j <= ny-2; j++) |
{ | { |
dery_bh[j * nx + i] = (-bh[(j-3) * nx + i] + 9.0*bh[(j-2) * nx + i] - 45.0*bh[(j-1) * nx + i] + 45*bh[(j+1) * nx + i] - 9.0*bh[(j+2) * nx + i] + bh[(j+3) * nx + i])*(1.0/60.0); |
dery_bh[j * nx + i] = (bh[(j+1) * nx + i] - bh[(j-1) * nx + i])*0.5; |
} | } |
} | } |
| |
| |
/* consider the edges: 3 pixels on each edge, for a total of 12 edge formulae below */ |
/* consider the edges */ |
i=0; | i=0; |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
derx_bh[j * nx + i] = (-147.0*bh[j * nx + i] + 360.0*bh[j * nx + (i+1)] - 450.0*bh[j * nx + (i+2)] + 400.0*bh[j * nx + (i+3)] - 225.0*bh[j * nx + (i+4)] + 72.0*bh[j * nx + (i+5)] - 10.0*bh[j * nx + (i+6)])*(1.0/60.0); |
derx_bh[j * nx + i] = ( (-3*bh[j * nx + i]) + (4*bh[j * nx + (i+1)]) - (bh[j * nx + (i+2)]) )*0.5; |
} | } |
| |
i=nx-1; | i=nx-1; |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
derx_bh[j * nx + i] = ( 147.0*bh[j * nx + i] - 360.0*bh[j * nx + (i-1)] + 450.0*bh[j * nx + (i-2)] - 400.0*bh[j * nx + (i-3)] + 225.0*bh[j * nx + (i-4)] - 72.0*bh[j * nx + (i-5)] + 10.0*bh[j * nx + (i-6)])*(1.0/60.0); |
derx_bh[j * nx + i] = ( (3*bh[j * nx + i]) + (-4*bh[j * nx + (i-1)]) - (-bh[j * nx + (i-2)]) )*0.5; |
} | } |
| |
|
|
i=1; |
|
for (j = 0; j <= ny-2; j++) |
|
{ |
|
derx_bh[j * nx + i] = (-10.0*bh[j * nx + i] - 77.0*bh[j * nx + (i+1)] + 150.0*bh[j * nx + (i+2)] - 100.0*bh[j * nx + (i+3)] + 50.0*bh[j * nx + (i+4)] - 15.0*bh[j * nx + (i+5)] + 2.0*bh[j * nx + (i+6)])*(1.0/60.0); |
|
} |
|
|
|
i=nx-2; |
|
for (j = 0; j <= ny-2; j++) |
|
{ |
|
derx_bh[j * nx + i] = ( 10.0*bh[j * nx + i] + 77.0*bh[j * nx + (i-1)] - 150.0*bh[j * nx + (i-2)] + 100.0*bh[j * nx + (i-3)] - 50.0*bh[j * nx + (i-4)] + 15.0*bh[j * nx + (i-5)] - 2.0*bh[j * nx + (i-6)])*(1.0/60.0); |
|
} |
|
|
|
|
|
i=2; |
|
for (j = 0; j <= ny-2; j++) |
|
{ |
|
derx_bh[j * nx + i] = ( 2.0*bh[j * nx + i] - 24.0*bh[j * nx + (i+1)] - 35.0*bh[j * nx + (i+2)] + 80.0*bh[j * nx + (i+3)] - 30.0*bh[j * nx + (i+4)] + 8.0*bh[j * nx + (i+5)] - bh[j * nx + (i+6)])*(1.0/60.0); |
|
} |
|
|
|
i=nx-3; |
|
for (j = 0; j <= ny-2; j++) |
|
{ |
|
derx_bh[j * nx + i] = (-2.0*bh[j * nx + i] + 24.0*bh[j * nx + (i-1)] + 35.0*bh[j * nx + (i-2)] - 80.0*bh[j * nx + (i-3)] + 30.0*bh[j * nx + (i-4)] - 8.0*bh[j * nx + (i-5)] + bh[j * nx + (i-6)])*(1.0/60.0); |
|
} |
|
|
|
|
|
j=0; | j=0; |
for (i = 0; i <= nx-1; i++) | for (i = 0; i <= nx-1; i++) |
{ | { |
dery_bh[j * nx + i] = (-147.0*bh[j * nx + i] + 360.0*bh[(j+1) * nx + i] - 450.0*bh[(j+2) * nx + i] + 400.0*bh[(j+3) * nx + i] - 225.0*bh[(j+4) * nx + i] + 72.0*bh[(j+5) * nx + i] - 10.0*bh[(j+6) * nx + i])*(1.0/60.0); |
dery_bh[j * nx + i] = ( (-3*bh[j*nx + i]) + (4*bh[(j+1) * nx + i]) - (bh[(j+2) * nx + i]) )*0.5; |
} | } |
| |
j=ny-1; | j=ny-1; |
for (i = 0; i <= nx-1; i++) | for (i = 0; i <= nx-1; i++) |
{ | { |
dery_bh[j * nx + i] = ( 147.0*bh[j * nx + i] - 360.0*bh[(j-1) * nx + i] + 450.0*bh[(j-2) * nx + i] - 400.0*bh[(j-3) * nx + i] + 225.0*bh[(j-4) * nx + i] - 72.0*bh[(j-5) * nx + i] + 10.0*bh[(j-6) * nx + i])*(1.0/60.0); |
dery_bh[j * nx + i] = ( (3*bh[j * nx + i]) + (-4*bh[(j-1) * nx + i]) - (-bh[(j-2) * nx + i]) )*0.5; |
} |
|
|
|
j=1; |
|
for (i = 0; i <= nx-2; i++) |
|
{ |
|
dery_bh[j * nx + i] = (-10.0*bh[j * nx + i] - 77.0*bh[(j+1) * nx + i] + 150.0*bh[(j+2) * nx + i] - 100.0*bh[(j+3) * nx + i] + 50.0*bh[(j+4) * nx + i] - 15.0*bh[(j+5) * nx + i] + 2.0*bh[(j+6) * nx + i])*(1.0/60.0); |
|
} |
|
|
|
j=ny-2; |
|
for (i = 0; i <= nx-2; i++) |
|
{ |
|
dery_bh[j * nx + i] = ( 10.0*bh[j * nx + i] + 77.0*bh[(j-1) * nx + i] - 150.0*bh[(j-2) * nx + i] + 100.0*bh[(j-3) * nx + i] - 50.0*bh[(j-4) * nx + i] + 15.0*bh[(j-5) * nx + i] - 2.0*bh[(j-6) * nx + i])*(1.0/60.0); |
|
} |
|
|
|
j=2; |
|
for (i = 0; i <= nx-3; i++) |
|
{ |
|
dery_bh[j * nx + i] = ( 2.0*bh[j * nx + i] - 24.0*bh[(j+1) * nx + i] - 35.0*bh[(j+2) * nx + i] + 80.0*bh[(j+3) * nx + i] - 30.0*bh[(j+4) * nx + i] + 8.0*bh[(j+5) * nx + i] - bh[(j+6) * nx + i])*(1.0/60.0); |
|
} |
|
|
|
j=ny-3; |
|
for (i = 0; i <= nx-3; i++) |
|
{ |
|
dery_bh[j * nx + i] = (-2.0*bh[j * nx + i] + 24.0*bh[(j-1) * nx + i] + 35.0*bh[(j-2) * nx + i] - 80.0*bh[(j-3) * nx + i] + 30.0*bh[(j-4) * nx + i] - 8.0*bh[(j-5) * nx + i] + bh[(j-6) * nx + i])*(1.0/60.0); |
|
} | } |
| |
| |
Line 453 int computeBhderivative(float *bh, float |
|
Line 402 int computeBhderivative(float *bh, float |
|
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
|
if ( (derx_bh[j * nx + i] + dery_bh[j * nx + i]) == 0) continue; |
|
if isnan(bh[j * nx + i]) continue; |
|
if isnan(bh[(j+1) * nx + i]) continue; |
|
if isnan(bh[(j-1) * nx + i]) continue; |
|
if isnan(bh[j * nx + i-1]) continue; |
|
if isnan(bh[j * nx + i+1]) continue; |
|
if isnan(bh_err[j * nx + i]) continue; |
if isnan(derx_bh[j * nx + i]) continue; | if isnan(derx_bh[j * nx + i]) continue; |
if isnan(dery_bh[j * nx + i]) continue; | if isnan(dery_bh[j * nx + i]) continue; |
sum += sqrt( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] ); /* Units of Gauss */ | sum += sqrt( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] ); /* Units of Gauss */ |
err += (2.0)*bh_err[j * nx + i]*bh_err[j * nx + i]; |
err += (((bh[(j+1) * nx + i]-bh[(j-1) * nx + i])*(bh[(j+1) * nx + i]-bh[(j-1) * nx + i])) * (bh_err[(j+1) * nx + i]*bh_err[(j+1) * nx + i] + bh_err[(j-1) * nx + i]*bh_err[(j-1) * nx + i])) / (16.0*( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] ))+ |
|
(((bh[j * nx + (i+1)]-bh[j * nx + (i-1)])*(bh[j * nx + (i+1)]-bh[j * nx + (i-1)])) * (bh_err[j * nx + (i+1)]*bh_err[j * nx + (i+1)] + bh_err[j * nx + (i-1)]*bh_err[j * nx + (i-1)])) / (16.0*( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] )) ; |
count_mask++; | count_mask++; |
} | } |
} | } |
| |
*mean_derivative_bh_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram | *mean_derivative_bh_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram |
*mean_derivative_bh_err_ptr = (sqrt(err))/(count_mask); // error in the quantity (sum)/(count_mask) | *mean_derivative_bh_err_ptr = (sqrt(err))/(count_mask); // error in the quantity (sum)/(count_mask) |
printf("MEANGBH=%f\n",*mean_derivative_bh_ptr); |
//printf("MEANGBH=%f\n",*mean_derivative_bh_ptr); |
printf("MEANGBH_err=%f\n",*mean_derivative_bh_err_ptr); |
//printf("MEANGBH_err=%f\n",*mean_derivative_bh_err_ptr); |
| |
return 0; | return 0; |
} | } |
Line 475 int computeBhderivative(float *bh, float |
|
Line 432 int computeBhderivative(float *bh, float |
|
int computeBzderivative(float *bz, float *bz_err, int *dims, float *mean_derivative_bz_ptr, float *mean_derivative_bz_err_ptr, int *mask, int *bitmask, float *derx_bz, float *dery_bz) | int computeBzderivative(float *bz, float *bz_err, int *dims, float *mean_derivative_bz_ptr, float *mean_derivative_bz_err_ptr, int *mask, int *bitmask, float *derx_bz, float *dery_bz) |
{ | { |
| |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask=0; |
int ny = dims[1]; |
|
int i = 0; |
if (nx <= 0 || ny <= 0) return 1; |
int j = 0; |
|
int count_mask = 0; |
|
double sum = 0.0; |
|
double err = 0.0; |
*mean_derivative_bz_ptr = 0.0; | *mean_derivative_bz_ptr = 0.0; |
float sum,err = 0.0; |
|
| |
|
if (nx <= 0 || ny <= 0) return 1; |
| |
/* brute force method of calculating the derivative (no consideration for edges) */ | /* brute force method of calculating the derivative (no consideration for edges) */ |
for (i = 3; i <= nx-4; i++) |
for (i = 1; i <= nx-2; i++) |
{ | { |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
if isnan(bz[j * nx + i]) continue; | if isnan(bz[j * nx + i]) continue; |
derx_bz[j * nx + i] = (-bz[j * nx + (i-3)] + 9.0*bz[j * nx + (i-2)] - 45.0*bz[j * nx + (i-1)] + 45*bz[j * nx + (i+1)] - 9.0*bz[j * nx + (i+2)] + bz[j * nx + (i+3)])*(1.0/60.0); |
derx_bz[j * nx + i] = (bz[j * nx + i+1] - bz[j * nx + i-1])*0.5; |
} | } |
} | } |
| |
/* brute force method of calculating the derivative (no consideration for edges) */ | /* brute force method of calculating the derivative (no consideration for edges) */ |
for (i = 0; i <= nx-1; i++) | for (i = 0; i <= nx-1; i++) |
{ | { |
for (j = 3; j <= ny-4; j++) |
for (j = 1; j <= ny-2; j++) |
{ | { |
if isnan(bz[j * nx + i]) continue; | if isnan(bz[j * nx + i]) continue; |
dery_bz[j * nx + i] = (-bz[(j-3) * nx + i] + 9.0*bz[(j-2) * nx + i] - 45.0*bz[(j-1) * nx + i] + 45*bz[(j+1) * nx + i] - 9.0*bz[(j+2) * nx + i] + bz[(j+3) * nx + i])*(1.0/60.0); |
dery_bz[j * nx + i] = (bz[(j+1) * nx + i] - bz[(j-1) * nx + i])*0.5; |
} | } |
} | } |
| |
| |
/* consider the edges: 3 pixels on each edge, for a total of 12 edge formulae below */ |
/* consider the edges */ |
i=0; | i=0; |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
if isnan(bz[j * nx + i]) continue; | if isnan(bz[j * nx + i]) continue; |
derx_bz[j * nx + i] = (-147.0*bz[j * nx + i] + 360.0*bz[j * nx + (i+1)] - 450.0*bz[j * nx + (i+2)] + 400.0*bz[j * nx + (i+3)] - 225.0*bz[j * nx + (i+4)] + 72.0*bz[j * nx + (i+5)] - 10.0*bz[j * nx + (i+6)])*(1.0/60.0); |
derx_bz[j * nx + i] = ( (-3*bz[j * nx + i]) + (4*bz[j * nx + (i+1)]) - (bz[j * nx + (i+2)]) )*0.5; |
} | } |
| |
i=nx-1; | i=nx-1; |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
if isnan(bz[j * nx + i]) continue; | if isnan(bz[j * nx + i]) continue; |
derx_bz[j * nx + i] = ( 147.0*bz[j * nx + i] - 360.0*bz[j * nx + (i-1)] + 450.0*bz[j * nx + (i-2)] - 400.0*bz[j * nx + (i-3)] + 225.0*bz[j * nx + (i-4)] - 72.0*bz[j * nx + (i-5)] + 10.0*bz[j * nx + (i-6)])*(1.0/60.0); |
derx_bz[j * nx + i] = ( (3*bz[j * nx + i]) + (-4*bz[j * nx + (i-1)]) - (-bz[j * nx + (i-2)]) )*0.5; |
} |
|
|
|
|
|
i=1; |
|
for (j = 0; j <= ny-2; j++) |
|
{ |
|
if isnan(bz[j * nx + i]) continue; |
|
derx_bz[j * nx + i] = (-10.0*bz[j * nx + i] - 77.0*bz[j * nx + (i+1)] + 150.0*bz[j * nx + (i+2)] - 100.0*bz[j * nx + (i+3)] + 50.0*bz[j * nx + (i+4)] - 15.0*bz[j * nx + (i+5)] + 2.0*bz[j * nx + (i+6)])*(1.0/60.0); |
|
} |
|
|
|
i=nx-2; |
|
for (j = 0; j <= ny-2; j++) |
|
{ |
|
if isnan(bz[j * nx + i]) continue; |
|
derx_bz[j * nx + i] = ( 10.0*bz[j * nx + i] + 77.0*bz[j * nx + (i-1)] - 150.0*bz[j * nx + (i-2)] + 100.0*bz[j * nx + (i-3)] - 50.0*bz[j * nx + (i-4)] + 15.0*bz[j * nx + (i-5)] - 2.0*bz[j * nx + (i-6)])*(1.0/60.0); |
|
} |
|
|
|
|
|
i=2; |
|
for (j = 0; j <= ny-2; j++) |
|
{ |
|
if isnan(bz[j * nx + i]) continue; |
|
derx_bz[j * nx + i] = ( 2.0*bz[j * nx + i] - 24.0*bz[j * nx + (i+1)] - 35.0*bz[j * nx + (i+2)] + 80.0*bz[j * nx + (i+3)] - 30.0*bz[j * nx + (i+4)] + 8.0*bz[j * nx + (i+5)] - bz[j * nx + (i+6)])*(1.0/60.0); |
|
} |
|
|
|
i=nx-3; |
|
for (j = 0; j <= ny-2; j++) |
|
{ |
|
if isnan(bz[j * nx + i]) continue; |
|
derx_bz[j * nx + i] = (-2.0*bz[j * nx + i] + 24.0*bz[j * nx + (i-1)] + 35.0*bz[j * nx + (i-2)] - 80.0*bz[j * nx + (i-3)] + 30.0*bz[j * nx + (i-4)] - 8.0*bz[j * nx + (i-5)] + bz[j * nx + (i-6)])*(1.0/60.0); |
|
} | } |
| |
|
|
j=0; | j=0; |
for (i = 0; i <= nx-1; i++) | for (i = 0; i <= nx-1; i++) |
{ | { |
if isnan(bz[j * nx + i]) continue; | if isnan(bz[j * nx + i]) continue; |
dery_bz[j * nx + i] = (-147.0*bz[j * nx + i] + 360.0*bz[(j+1) * nx + i] - 450.0*bz[(j+2) * nx + i] + 400.0*bz[(j+3) * nx + i] - 225.0*bz[(j+4) * nx + i] + 72.0*bz[(j+5) * nx + i] - 10.0*bz[(j+6) * nx + i])*(1.0/60.0); |
dery_bz[j * nx + i] = ( (-3*bz[j*nx + i]) + (4*bz[(j+1) * nx + i]) - (bz[(j+2) * nx + i]) )*0.5; |
} | } |
| |
j=ny-1; | j=ny-1; |
for (i = 0; i <= nx-1; i++) | for (i = 0; i <= nx-1; i++) |
{ | { |
if isnan(bz[j * nx + i]) continue; | if isnan(bz[j * nx + i]) continue; |
dery_bz[j * nx + i] = ( 147.0*bz[j * nx + i] - 360.0*bz[(j-1) * nx + i] + 450.0*bz[(j-2) * nx + i] - 400.0*bz[(j-3) * nx + i] + 225.0*bz[(j-4) * nx + i] - 72.0*bz[(j-5) * nx + i] + 10.0*bz[(j-6) * nx + i])*(1.0/60.0); |
dery_bz[j * nx + i] = ( (3*bz[j * nx + i]) + (-4*bz[(j-1) * nx + i]) - (-bz[(j-2) * nx + i]) )*0.5; |
} |
|
|
|
j=1; |
|
for (i = 0; i <= nx-2; i++) |
|
{ |
|
if isnan(bz[j * nx + i]) continue; |
|
dery_bz[j * nx + i] = (-10.0*bz[j * nx + i] - 77.0*bz[(j+1) * nx + i] + 150.0*bz[(j+2) * nx + i] - 100.0*bz[(j+3) * nx + i] + 50.0*bz[(j+4) * nx + i] - 15.0*bz[(j+5) * nx + i] + 2.0*bz[(j+6) * nx + i])*(1.0/60.0); |
|
} |
|
|
|
j=ny-2; |
|
for (i = 0; i <= nx-2; i++) |
|
{ |
|
if isnan(bz[j * nx + i]) continue; |
|
dery_bz[j * nx + i] = ( 10.0*bz[j * nx + i] + 77.0*bz[(j-1) * nx + i] - 150.0*bz[(j-2) * nx + i] + 100.0*bz[(j-3) * nx + i] - 50.0*bz[(j-4) * nx + i] + 15.0*bz[(j-5) * nx + i] - 2.0*bz[(j-6) * nx + i])*(1.0/60.0); |
|
} |
|
|
|
j=2; |
|
for (i = 0; i <= nx-3; i++) |
|
{ |
|
if isnan(bz[j * nx + i]) continue; |
|
dery_bz[j * nx + i] = ( 2.0*bz[j * nx + i] - 24.0*bz[(j+1) * nx + i] - 35.0*bz[(j+2) * nx + i] + 80.0*bz[(j+3) * nx + i] - 30.0*bz[(j+4) * nx + i] + 8.0*bz[(j+5) * nx + i] - bz[(j+6) * nx + i])*(1.0/60.0); |
|
} |
|
|
|
j=ny-3; |
|
for (i = 0; i <= nx-3; i++) |
|
{ |
|
if isnan(bz[j * nx + i]) continue; |
|
dery_bz[j * nx + i] = (-2.0*bz[j * nx + i] + 24.0*bz[(j-1) * nx + i] + 35.0*bz[(j-2) * nx + i] - 80.0*bz[(j-3) * nx + i] + 30.0*bz[(j-4) * nx + i] - 8.0*bz[(j-5) * nx + i] + bz[(j-6) * nx + i])*(1.0/60.0); |
|
} | } |
| |
| |
Line 598 int computeBzderivative(float *bz, float |
|
Line 498 int computeBzderivative(float *bz, float |
|
{ | { |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
// if ( (derx_bz[j * nx + i]-dery_bz[j * nx + i]) == 0) continue; |
|
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
|
if ( (derx_bz[j * nx + i] + dery_bz[j * nx + i]) == 0) continue; |
if isnan(bz[j * nx + i]) continue; | if isnan(bz[j * nx + i]) continue; |
//if isnan(bz_err[j * nx + i]) continue; |
if isnan(bz[(j+1) * nx + i]) continue; |
|
if isnan(bz[(j-1) * nx + i]) continue; |
|
if isnan(bz[j * nx + i-1]) continue; |
|
if isnan(bz[j * nx + i+1]) continue; |
|
if isnan(bz_err[j * nx + i]) continue; |
if isnan(derx_bz[j * nx + i]) continue; | if isnan(derx_bz[j * nx + i]) continue; |
if isnan(dery_bz[j * nx + i]) continue; | if isnan(dery_bz[j * nx + i]) continue; |
sum += sqrt( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] ); /* Units of Gauss */ | sum += sqrt( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] ); /* Units of Gauss */ |
err += 2.0*bz_err[j * nx + i]*bz_err[j * nx + i]; |
err += (((bz[(j+1) * nx + i]-bz[(j-1) * nx + i])*(bz[(j+1) * nx + i]-bz[(j-1) * nx + i])) * (bz_err[(j+1) * nx + i]*bz_err[(j+1) * nx + i] + bz_err[(j-1) * nx + i]*bz_err[(j-1) * nx + i])) / |
|
(16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] )) + |
|
(((bz[j * nx + (i+1)]-bz[j * nx + (i-1)])*(bz[j * nx + (i+1)]-bz[j * nx + (i-1)])) * (bz_err[j * nx + (i+1)]*bz_err[j * nx + (i+1)] + bz_err[j * nx + (i-1)]*bz_err[j * nx + (i-1)])) / |
|
(16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] )) ; |
count_mask++; | count_mask++; |
} | } |
} | } |
| |
*mean_derivative_bz_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram | *mean_derivative_bz_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram |
*mean_derivative_bz_err_ptr = (sqrt(err))/(count_mask); // error in the quantity (sum)/(count_mask) | *mean_derivative_bz_err_ptr = (sqrt(err))/(count_mask); // error in the quantity (sum)/(count_mask) |
printf("MEANGBZ=%f\n",*mean_derivative_bz_ptr); |
//printf("MEANGBZ=%f\n",*mean_derivative_bz_ptr); |
printf("MEANGBZ_err=%f\n",*mean_derivative_bz_err_ptr); |
//printf("MEANGBZ_err=%f\n",*mean_derivative_bz_err_ptr); |
| |
return 0; | return 0; |
} | } |
| |
/*===========================================*/ | /*===========================================*/ |
|
|
/* Example function 8: Current Jz = (dBy/dx) - (dBx/dy) */ | /* Example function 8: Current Jz = (dBy/dx) - (dBx/dy) */ |
| |
// In discretized space like data pixels, | // In discretized space like data pixels, |
Line 627 int computeBzderivative(float *bz, float |
|
Line 533 int computeBzderivative(float *bz, float |
|
// the integration of the field Bx and By along | // the integration of the field Bx and By along |
// the circumference of the data pixel divided by the area of the pixel. | // the circumference of the data pixel divided by the area of the pixel. |
// One form of differencing (a word for the differential operator | // One form of differencing (a word for the differential operator |
// in the discretized space) of the curl is expressed as the following, |
// in the discretized space) of the curl is expressed as |
// which utilizes a second-order finite difference method: |
|
|
|
// (dx * (Bx(i,j-1)+Bx(i,j)) / 2 | // (dx * (Bx(i,j-1)+Bx(i,j)) / 2 |
// +dy * (By(i+1,j)+By(i,j)) / 2 | // +dy * (By(i+1,j)+By(i,j)) / 2 |
// -dx * (Bx(i,j+1)+Bx(i,j)) / 2 | // -dx * (Bx(i,j+1)+Bx(i,j)) / 2 |
// -dy * (By(i-1,j)+By(i,j)) / 2) / (dx * dy) | // -dy * (By(i-1,j)+By(i,j)) / 2) / (dx * dy) |
// | // |
// | // |
// However, for the purposes of this calculation, we will use a sixth-order finite difference |
|
// method taken from the pencil code: |
|
// |
|
// dBy/dx = ( -By*(i-3,j) + 9By(i-2,j) - 45By(i-1,j) + 45By(i+1,j) - 9By(i+2,j) + By(i+3,j) )/ 60 |
|
// and similarly for dBx/dy. |
|
// |
|
// To change units from Gauss/pixel to mA/m^2 (the units for Jz in Leka and Barnes, 2003), | // To change units from Gauss/pixel to mA/m^2 (the units for Jz in Leka and Barnes, 2003), |
// one must perform the following unit conversions: | // one must perform the following unit conversions: |
// (Gauss)(1/arcsec)(arcsec/meter)(Newton/Gauss*Ampere*meter)(Ampere^2/Newton)(milliAmpere/Ampere), or | // (Gauss)(1/arcsec)(arcsec/meter)(Newton/Gauss*Ampere*meter)(Ampere^2/Newton)(milliAmpere/Ampere), or |
Line 664 int computeBzderivative(float *bz, float |
|
Line 562 int computeBzderivative(float *bz, float |
|
// int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery, float *noisebx, | // int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery, float *noisebx, |
// float *noiseby, float *noisebz) | // float *noiseby, float *noisebz) |
| |
|
|
int computeJz(float *bx_err, float *by_err, float *bx, float *by, int *dims, float *jz, float *jz_err, float *jz_err_squared, | int computeJz(float *bx_err, float *by_err, float *bx, float *by, int *dims, float *jz, float *jz_err, float *jz_err_squared, |
int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery) | int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery) |
| |
| |
{ | { |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask=0; |
int ny = dims[1]; |
printf("nx=%d\n",nx); |
int i = 0; |
printf("ny=%d\n",ny); |
int j = 0; |
|
int count_mask = 0; |
|
|
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
float curl=0.0, us_i=0.0,test_perimeter=0.0,mean_curl=0.0; |
|
| |
/* Calculate the derivative*/ | /* Calculate the derivative*/ |
/* brute force method of calculating the derivative (no consideration for edges) */ | /* brute force method of calculating the derivative (no consideration for edges) */ |
for (i = 3; i <= nx-4; i++) |
|
|
for (i = 1; i <= nx-2; i++) |
{ | { |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
if isnan(by[j * nx + i]) continue; | if isnan(by[j * nx + i]) continue; |
derx[j * nx + i] = (-by[j * nx + (i-3)] + 9.0*by[j * nx + (i-2)] - 45.0*by[j * nx + (i-1)] + 45*by[j * nx + (i+1)] - 9.0*by[j * nx + (i+2)] + by[j * nx + (i+3)])*(1.0/60.0); |
derx[j * nx + i] = (by[j * nx + i+1] - by[j * nx + i-1])*0.5; |
} | } |
} | } |
| |
/* brute force method of calculating the derivative (no consideration for edges) */ |
|
for (i = 0; i <= nx-1; i++) | for (i = 0; i <= nx-1; i++) |
{ | { |
for (j = 3; j <= ny-4; j++) |
for (j = 1; j <= ny-2; j++) |
{ | { |
if isnan(bx[j * nx + i]) continue; | if isnan(bx[j * nx + i]) continue; |
dery[j * nx + i] = (-bx[(j-3) * nx + i] + 9.0*bx[(j-2) * nx + i] - 45.0*bx[(j-1) * nx + i] + 45*bx[(j+1) * nx + i] - 9.0*bx[(j+2) * nx + i] + bx[(j+3) * nx + i])*(1.0/60.0); |
dery[j * nx + i] = (bx[(j+1) * nx + i] - bx[(j-1) * nx + i])*0.5; |
} | } |
} | } |
| |
/* consider the edges: 3 pixels on each edge, for a total of 12 edge formulae below */ |
// consider the edges |
i=0; | i=0; |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
if isnan(by[j * nx + i]) continue; | if isnan(by[j * nx + i]) continue; |
derx[j * nx + i] = (-147.0*by[j * nx + i] + 360.0*by[j * nx + (i+1)] - 450.0*by[j * nx + (i+2)] + 400.0*by[j * nx + (i+3)] - 225.0*by[j * nx + (i+4)] + 72.0*by[j * nx + (i+5)] - 10.0*by[j * nx + (i+6)])*(1.0/60.0); |
derx[j * nx + i] = ( (-3*by[j * nx + i]) + (4*by[j * nx + (i+1)]) - (by[j * nx + (i+2)]) )*0.5; |
} | } |
| |
i=nx-1; | i=nx-1; |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
if isnan(by[j * nx + i]) continue; | if isnan(by[j * nx + i]) continue; |
derx[j * nx + i] = ( 147.0*by[j * nx + i] - 360.0*by[j * nx + (i-1)] + 450.0*by[j * nx + (i-2)] - 400.0*by[j * nx + (i-3)] + 225.0*by[j * nx + (i-4)] - 72.0*by[j * nx + (i-5)] + 10.0*by[j * nx + (i-6)])*(1.0/60.0); |
derx[j * nx + i] = ( (3*by[j * nx + i]) + (-4*by[j * nx + (i-1)]) - (-by[j * nx + (i-2)]) )*0.5; |
} |
|
|
|
|
|
i=1; |
|
for (j = 0; j <= ny-2; j++) |
|
{ |
|
if isnan(by[j * nx + i]) continue; |
|
derx[j * nx + i] = (-10.0*by[j * nx + i] - 77.0*by[j * nx + (i+1)] + 150.0*by[j * nx + (i+2)] - 100.0*by[j * nx + (i+3)] + 50.0*by[j * nx + (i+4)] - 15.0*by[j * nx + (i+5)] + 2.0*by[j * nx + (i+6)])*(1.0/60.0); |
|
} | } |
| |
i=nx-2; |
|
for (j = 0; j <= ny-2; j++) |
|
{ |
|
if isnan(by[j * nx + i]) continue; |
|
derx[j * nx + i] = ( 10.0*by[j * nx + i] + 77.0*by[j * nx + (i-1)] - 150.0*by[j * nx + (i-2)] + 100.0*by[j * nx + (i-3)] - 50.0*by[j * nx + (i-4)] + 15.0*by[j * nx + (i-5)] - 2.0*by[j * nx + (i-6)])*(1.0/60.0); |
|
} |
|
|
|
|
|
i=2; |
|
for (j = 0; j <= ny-2; j++) |
|
{ |
|
if isnan(by[j * nx + i]) continue; |
|
derx[j * nx + i] = ( 2.0*by[j * nx + i] - 24.0*by[j * nx + (i+1)] - 35.0*by[j * nx + (i+2)] + 80.0*by[j * nx + (i+3)] - 30.0*by[j * nx + (i+4)] + 8.0*by[j * nx + (i+5)] - by[j * nx + (i+6)])*(1.0/60.0); |
|
} |
|
|
|
i=nx-3; |
|
for (j = 0; j <= ny-2; j++) |
|
{ |
|
if isnan(by[j * nx + i]) continue; |
|
derx[j * nx + i] = (-2.0*by[j * nx + i] + 24.0*by[j * nx + (i-1)] + 35.0*by[j * nx + (i-2)] - 80.0*by[j * nx + (i-3)] + 30.0*by[j * nx + (i-4)] - 8.0*by[j * nx + (i-5)] + by[j * nx + (i-6)])*(1.0/60.0); |
|
} |
|
|
|
|
|
j=0; | j=0; |
for (i = 0; i <= nx-1; i++) | for (i = 0; i <= nx-1; i++) |
{ | { |
if isnan(bx[j * nx + i]) continue; | if isnan(bx[j * nx + i]) continue; |
dery[j * nx + i] = (-147.0*bx[j * nx + i] + 360.0*bx[(j+1) * nx + i] - 450.0*bx[(j+2) * nx + i] + 400.0*bx[(j+3) * nx + i] - 225.0*bx[(j+4) * nx + i] + 72.0*bx[(j+5) * nx + i] - 10.0*bx[(j+6) * nx + i])*(1.0/60.0); |
dery[j * nx + i] = ( (-3*bx[j*nx + i]) + (4*bx[(j+1) * nx + i]) - (bx[(j+2) * nx + i]) )*0.5; |
} | } |
| |
j=ny-1; | j=ny-1; |
for (i = 0; i <= nx-1; i++) | for (i = 0; i <= nx-1; i++) |
{ | { |
if isnan(bx[j * nx + i]) continue; | if isnan(bx[j * nx + i]) continue; |
dery[j * nx + i] = ( 147.0*bx[j * nx + i] - 360.0*bx[(j-1) * nx + i] + 450.0*bx[(j-2) * nx + i] - 400.0*bx[(j-3) * nx + i] + 225.0*bx[(j-4) * nx + i] - 72.0*bx[(j-5) * nx + i] + 10.0*bx[(j-6) * nx + i])*(1.0/60.0); |
dery[j * nx + i] = ( (3*bx[j * nx + i]) + (-4*bx[(j-1) * nx + i]) - (-bx[(j-2) * nx + i]) )*0.5; |
} |
|
|
|
j=1; |
|
for (i = 0; i <= nx-2; i++) |
|
{ |
|
if isnan(bx[j * nx + i]) continue; |
|
dery[j * nx + i] = (-10.0*bx[j * nx + i] - 77.0*bx[(j+1) * nx + i] + 150.0*bx[(j+2) * nx + i] - 100.0*bx[(j+3) * nx + i] + 50.0*bx[(j+4) * nx + i] - 15.0*bx[(j+5) * nx + i] + 2.0*bx[(j+6) * nx + i])*(1.0/60.0); |
|
} | } |
| |
j=ny-2; |
for (i = 1; i <= nx-2; i++) |
for (i = 0; i <= nx-2; i++) |
|
{ | { |
if isnan(bx[j * nx + i]) continue; |
for (j = 1; j <= ny-2; j++) |
dery[j * nx + i] = ( 10.0*bx[j * nx + i] + 77.0*bx[(j-1) * nx + i] - 150.0*bx[(j-2) * nx + i] + 100.0*bx[(j-3) * nx + i] - 50.0*bx[(j-4) * nx + i] + 15.0*bx[(j-5) * nx + i] - 2.0*bx[(j-6) * nx + i])*(1.0/60.0); |
|
} |
|
|
|
j=2; |
|
for (i = 0; i <= nx-3; i++) |
|
{ |
|
if isnan(bx[j * nx + i]) continue; |
|
dery[j * nx + i] = ( 2.0*bx[j * nx + i] - 24.0*bx[(j+1) * nx + i] - 35.0*bx[(j+2) * nx + i] + 80.0*bx[(j+3) * nx + i] - 30.0*bx[(j+4) * nx + i] + 8.0*bx[(j+5) * nx + i] - bx[(j+6) * nx + i])*(1.0/60.0); |
|
} |
|
|
|
j=ny-3; |
|
for (i = 0; i <= nx-3; i++) |
|
{ |
|
if isnan(bx[j * nx + i]) continue; |
|
dery[j * nx + i] = (-2.0*bx[j * nx + i] + 24.0*bx[(j-1) * nx + i] + 35.0*bx[(j-2) * nx + i] - 80.0*bx[(j-3) * nx + i] + 30.0*bx[(j-4) * nx + i] - 8.0*bx[(j-5) * nx + i] + bx[(j-6) * nx + i])*(1.0/60.0); |
|
} |
|
|
|
for (i = 0; i <= nx-1; i++) |
|
{ |
|
for (j = 0; j <= ny-1; j++) |
|
{ | { |
/* calculate jz at all points */ |
// calculate jz at all points |
jz[j * nx + i] = (derx[j * nx + i]-dery[j * nx + i]); /* jz is in units of Gauss/pix */ |
|
|
|
|
|
/* calculate the error in jz at all points */ |
|
jz_err[j * nx + i]=sqrt( (1.0/60.0)*bx_err[(j-3) * nx + i]*(1.0/60.0)*bx_err[(j-3) * nx + i] + (9.0/60.0)*bx_err[(j-2) * nx + i]*(9.0/60.0)*bx_err[(j-2) * nx + i] + (45.0/60.0)*bx_err[(j-1) * nx + i]*(45.0/60.0)*bx_err[(j-1) * nx + i] + |
|
(1.0/60.0)*bx_err[(j+3) * nx + i]*(1.0/60.0)*bx_err[(j+3) * nx + i] + (9.0/60.0)*bx_err[(j+2) * nx + i]*(9.0/60.0)*bx_err[(j+2) * nx + i] + (45.0/60.0)*bx_err[(j+1) * nx + i]*(45.0/60.0)*bx_err[(j+1) * nx + i] + |
|
(1.0/60.0)*by_err[j * nx + (i-3)]*(1.0/60.0)*by_err[j * nx + (i-3)] + (9.0/60.0)*by_err[j * nx + (i-2)]*(9.0/60.0)*by_err[j * nx + (i-2)] + (45.0/60.0)*by_err[j * nx + (i-1)]*(45.0/60.0)*by_err[j * nx + (i-1)] + |
|
(1.0/60.0)*by_err[j * nx + (i+3)]*(1.0/60.0)*by_err[j * nx + (i+3)] + (9.0/60.0)*by_err[j * nx + (i+2)]*(9.0/60.0)*by_err[j * nx + (i+2)] + (45.0/60.0)*by_err[j * nx + (i+1)]*(45.0/60.0)*by_err[j * nx + (i+1)] ); |
|
| |
|
jz[j * nx + i] = (derx[j * nx + i]-dery[j * nx + i]); // jz is in units of Gauss/pix |
|
jz_err[j * nx + i] = 0.5*sqrt( (bx_err[(j+1) * nx + i]*bx_err[(j+1) * nx + i]) + (bx_err[(j-1) * nx + i]*bx_err[(j-1) * nx + i]) + |
|
(by_err[j * nx + (i+1)]*by_err[j * nx + (i+1)]) + (by_err[j * nx + (i-1)]*by_err[j * nx + (i-1)]) ) ; |
jz_err_squared[j * nx + i]=(jz_err[j * nx + i]*jz_err[j * nx + i]); | jz_err_squared[j * nx + i]=(jz_err[j * nx + i]*jz_err[j * nx + i]); |
count_mask++; | count_mask++; |
|
|
} | } |
//printf("\n"); |
|
} | } |
|
|
return 0; | return 0; |
} | } |
| |
/*===========================================*/ | /*===========================================*/ |
| |
|
/* Example function 9: Compute quantities on Jz array */ |
/* Example function 9: Compute quantities on smoothed Jz array */ |
// Compute mean and total current on Jz array. |
|
|
// All of the subsequent functions, including this one, use a smoothed Jz array. The smoothing is performed by Jesper's |
|
// fresize routines. These routines are located at /cvs/JSOC/proj/libs/interpolate. A Gaussian with a FWHM of 4 pixels |
|
// and truncation width of 12 pixels is used to smooth the array; however, a quick analysis shows that the mean values |
|
// of qualities like Jz and helicity do not change much as a result of smoothing. The smoothed array will, of course, |
|
// give a lower total Jz as the stron field pixels have been smoothed out to neighboring weaker field pixels. |
|
| |
int computeJzsmooth(float *bx, float *by, int *dims, float *jz, float *jz_smooth, float *jz_err, float *jz_rms_err, float *jz_err_squared_smooth, | int computeJzsmooth(float *bx, float *by, int *dims, float *jz, float *jz_smooth, float *jz_err, float *jz_rms_err, float *jz_err_squared_smooth, |
float *mean_jz_ptr, float *mean_jz_err_ptr, float *us_i_ptr, float *us_i_err_ptr, int *mask, int *bitmask, | float *mean_jz_ptr, float *mean_jz_err_ptr, float *us_i_ptr, float *us_i_err_ptr, int *mask, int *bitmask, |
Line 826 int computeJzsmooth(float *bx, float *by |
|
Line 653 int computeJzsmooth(float *bx, float *by |
|
| |
{ | { |
| |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask=0; |
int ny = dims[1]; |
|
int i = 0; |
|
int j = 0; |
|
int count_mask = 0; |
|
double curl = 0.0; |
|
double us_i = 0.0; |
|
double err = 0.0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
| |
float curl,us_i,test_perimeter,mean_curl,err=0.0; |
|
|
|
|
|
/* At this point, use the smoothed Jz array with a Gaussian (FWHM of 4 pix and truncation width of 12 pixels) but keep the original array dimensions*/ | /* At this point, use the smoothed Jz array with a Gaussian (FWHM of 4 pix and truncation width of 12 pixels) but keep the original array dimensions*/ |
for (i = 0; i <= nx-1; i++) | for (i = 0; i <= nx-1; i++) |
{ | { |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
//printf("%f ",jz_smooth[j * nx + i]); |
|
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
if isnan(derx[j * nx + i]) continue; | if isnan(derx[j * nx + i]) continue; |
if isnan(dery[j * nx + i]) continue; | if isnan(dery[j * nx + i]) continue; |
//if isnan(jz_smooth[j * nx + i]) continue; |
|
//curl += (jz_smooth[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref)*(0.00010)*(1/MUNAUGHT)*(1000.); /* curl is in units of mA / m^2 */ |
|
//us_i += fabs(jz_smooth[j * nx + i])*(cdelt1/1)*(rsun_ref/rsun_obs)*(0.00010)*(1/MUNAUGHT); /* us_i is in units of A */ |
|
//jz_rms_err[j * nx + i] = sqrt(jz_err_squared_smooth[j * nx + i]); |
|
//err += (jz_rms_err[j * nx + i]*jz_rms_err[j * nx + i]); |
|
if isnan(jz[j * nx + i]) continue; | if isnan(jz[j * nx + i]) continue; |
curl += (jz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref)*(0.00010)*(1/MUNAUGHT)*(1000.); /* curl is in units of mA / m^2 */ | curl += (jz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref)*(0.00010)*(1/MUNAUGHT)*(1000.); /* curl is in units of mA / m^2 */ |
us_i += fabs(jz[j * nx + i])*(cdelt1/1)*(rsun_ref/rsun_obs)*(0.00010)*(1/MUNAUGHT); /* us_i is in units of A */ | us_i += fabs(jz[j * nx + i])*(cdelt1/1)*(rsun_ref/rsun_obs)*(0.00010)*(1/MUNAUGHT); /* us_i is in units of A */ |
err += (jz_err[j * nx + i]*jz_err[j * nx + i]); | err += (jz_err[j * nx + i]*jz_err[j * nx + i]); |
count_mask++; | count_mask++; |
} | } |
//printf("\n"); |
|
} | } |
| |
/* Calculate mean vertical current density (mean_curl) and total unsigned vertical current (us_i) using smoothed Jz array and continue conditions above */ |
/* Calculate mean vertical current density (mean_jz) and total unsigned vertical current (us_i) using smoothed Jz array and continue conditions above */ |
*mean_jz_ptr = curl/(count_mask); /* mean_jz gets populated as MEANJZD */ | *mean_jz_ptr = curl/(count_mask); /* mean_jz gets populated as MEANJZD */ |
*mean_jz_err_ptr = (sqrt(err))*fabs(((rsun_obs/rsun_ref)*(0.00010)*(1/MUNAUGHT)*(1000.))/(count_mask)); // error in the quantity MEANJZD |
*mean_jz_err_ptr = (sqrt(err)/count_mask)*((1/cdelt1)*(rsun_obs/rsun_ref)*(0.00010)*(1/MUNAUGHT)*(1000.)); // error in the quantity MEANJZD |
| |
*us_i_ptr = (us_i); /* us_i gets populated as TOTUSJZ */ | *us_i_ptr = (us_i); /* us_i gets populated as TOTUSJZ */ |
*us_i_err_ptr = (sqrt(err))*fabs((cdelt1/1)*(rsun_ref/rsun_obs)*(0.00010)*(1/MUNAUGHT)); // error in the quantity TOTUSJZ |
*us_i_err_ptr = (sqrt(err))*((cdelt1/1)*(rsun_ref/rsun_obs)*(0.00010)*(1/MUNAUGHT)); // error in the quantity TOTUSJZ |
| |
printf("MEANJZD=%f\n",*mean_jz_ptr); |
//printf("MEANJZD=%f\n",*mean_jz_ptr); |
printf("MEANJZD_err=%f\n",*mean_jz_err_ptr); |
//printf("MEANJZD_err=%f\n",*mean_jz_err_ptr); |
| |
printf("TOTUSJZ=%g\n",*us_i_ptr); |
//printf("TOTUSJZ=%g\n",*us_i_ptr); |
printf("TOTUSJZ_err=%g\n",*us_i_err_ptr); |
//printf("TOTUSJZ_err=%g\n",*us_i_err_ptr); |
| |
return 0; | return 0; |
| |
Line 879 int computeJzsmooth(float *bx, float *by |
|
Line 702 int computeJzsmooth(float *bx, float *by |
|
/* Example function 10: Twist Parameter, alpha */ | /* Example function 10: Twist Parameter, alpha */ |
| |
// The twist parameter, alpha, is defined as alpha = Jz/Bz. In this case, the calculation | // The twist parameter, alpha, is defined as alpha = Jz/Bz. In this case, the calculation |
// for alpha is calculated in the following way (different from Leka and Barnes' approach): |
// for alpha is weighted by Bz (following Hagino et al., http://adsabs.harvard.edu/abs/2004PASJ...56..831H): |
| |
// (sum of all positive Bz + abs(sum of all negative Bz)) = avg Bz |
// numerator = sum of all Jz*Bz |
// (abs(sum of all Jz at positive Bz) + abs(sum of all Jz at negative Bz)) = avg Jz |
// denominator = sum of Bz*Bz |
// avg alpha = avg Jz / avg Bz |
// alpha = numerator/denominator |
|
|
// The sign is assigned as follows: |
|
// If the sum of all Bz is greater than 0, then evaluate the sum of Jz at the positive Bz pixels. |
|
// If this value is > 0, then alpha is > 0. |
|
// If this value is < 0, then alpha is <0. |
|
// |
|
// If the sum of all Bz is less than 0, then evaluate the sum of Jz at the negative Bz pixels. |
|
// If this value is > 0, then alpha is < 0. |
|
// If this value is < 0, then alpha is > 0. |
|
| |
// The units of alpha are in 1/Mm | // The units of alpha are in 1/Mm |
// The units of Jz are in Gauss/pix; the units of Bz are in Gauss. | // The units of Jz are in Gauss/pix; the units of Bz are in Gauss. |
Line 904 int computeJzsmooth(float *bx, float *by |
|
Line 718 int computeJzsmooth(float *bx, float *by |
|
int computeAlpha(float *jz_err, float *bz_err, float *bz, int *dims, float *jz, float *jz_smooth, float *mean_alpha_ptr, float *mean_alpha_err_ptr, int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) | int computeAlpha(float *jz_err, float *bz_err, float *bz, int *dims, float *jz, float *jz_smooth, float *mean_alpha_ptr, float *mean_alpha_err_ptr, int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) |
| |
{ | { |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask, a,b,c,d=0; |
int ny = dims[1]; |
|
int i = 0; |
|
int j = 0; |
|
double alpha_total = 0.0; |
|
double C = ((1/cdelt1)*(rsun_obs/rsun_ref)*(1000000.)); |
|
double total = 0.0; |
|
double A = 0.0; |
|
double B = 0.0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
|
|
float aa, bb, cc, bznew, alpha2, sum1, sum2, sum3, sum4, sum, sum5, sum6, sum_err=0.0; |
|
|
|
for (i = 1; i < nx-1; i++) | for (i = 1; i < nx-1; i++) |
{ | { |
for (j = 1; j < ny-1; j++) | for (j = 1; j < ny-1; j++) |
{ | { |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
//if isnan(jz_smooth[j * nx + i]) continue; |
|
if isnan(jz[j * nx + i]) continue; | if isnan(jz[j * nx + i]) continue; |
if isnan(bz[j * nx + i]) continue; | if isnan(bz[j * nx + i]) continue; |
//if (jz_smooth[j * nx + i] == 0) continue; |
|
if (jz[j * nx + i] == 0.0) continue; | if (jz[j * nx + i] == 0.0) continue; |
if (bz_err[j * nx + i] == 0.0) continue; |
|
if (bz[j * nx + i] == 0.0) continue; | if (bz[j * nx + i] == 0.0) continue; |
if (bz[j * nx + i] > 0) sum1 += ( bz[j * nx + i] ); a++; |
A += jz[j*nx+i]*bz[j*nx+i]; |
if (bz[j * nx + i] <= 0) sum2 += ( bz[j * nx + i] ); b++; |
B += bz[j*nx+i]*bz[j*nx+i]; |
//if (bz[j * nx + i] > 0) sum3 += ( jz_smooth[j * nx + i]); |
|
//if (bz[j * nx + i] <= 0) sum4 += ( jz_smooth[j * nx + i]); |
|
if (bz[j * nx + i] > 0) sum3 += ( jz[j * nx + i] ); c++; |
|
if (bz[j * nx + i] <= 0) sum4 += ( jz[j * nx + i] ); d++; |
|
sum5 += bz[j * nx + i]; |
|
/* sum_err is a fractional uncertainty */ |
|
sum_err += sqrt(((jz_err[j * nx + i]*jz_err[j * nx + i])/(jz[j * nx + i]*jz[j * nx + i])) + ((bz_err[j * nx + i]*bz_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i]))) * fabs( ( (jz[j * nx + i]) / (bz[j * nx + i]) ) *(1/cdelt1)*(rsun_obs/rsun_ref)*(1000000.)); |
|
count_mask++; |
|
} | } |
} | } |
| |
sum = (((fabs(sum3))+(fabs(sum4)))/((fabs(sum2))+sum1))*((1/cdelt1)*(rsun_obs/rsun_ref)*(1000000.)); /* the units for (jz/bz) are 1/Mm */ |
for (i = 1; i < nx-1; i++) |
|
{ |
/* Determine the sign of alpha */ |
for (j = 1; j < ny-1; j++) |
if ((sum5 > 0) && (sum3 > 0)) sum=sum; |
{ |
if ((sum5 > 0) && (sum3 <= 0)) sum=-sum; |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
if ((sum5 < 0) && (sum4 <= 0)) sum=sum; |
if isnan(jz[j * nx + i]) continue; |
if ((sum5 < 0) && (sum4 > 0)) sum=-sum; |
if isnan(bz[j * nx + i]) continue; |
|
if (jz[j * nx + i] == 0.0) continue; |
*mean_alpha_ptr = sum; /* Units are 1/Mm */ |
if (bz[j * nx + i] == 0.0) continue; |
*mean_alpha_err_ptr = (sqrt(sum_err*sum_err)) / ((a+b+c+d)*100.); // error in the quantity (sum)/(count_mask); factor of 100 comes from converting percent |
total += bz[j*nx+i]*bz[j*nx+i]*jz_err[j*nx+i]*jz_err[j*nx+i] + (jz[j*nx+i]-2*bz[j*nx+i]*A/B)*(jz[j*nx+i]-2*bz[j*nx+i]*A/B)*bz_err[j*nx+i]*bz_err[j*nx+i]; |
|
} |
printf("a=%d\n",a); |
} |
printf("b=%d\n",b); |
|
printf("d=%d\n",d); |
|
printf("c=%d\n",c); |
|
| |
printf("MEANALP=%f\n",*mean_alpha_ptr); |
/* Determine the absolute value of alpha. The units for alpha are 1/Mm */ |
printf("MEANALP_err=%f\n",*mean_alpha_err_ptr); |
alpha_total = ((A/B)*C); |
|
*mean_alpha_ptr = alpha_total; |
|
*mean_alpha_err_ptr = (C/B)*(sqrt(total)); |
| |
return 0; | return 0; |
} | } |
Line 973 int computeHelicity(float *jz_err, float |
|
Line 779 int computeHelicity(float *jz_err, float |
|
| |
{ | { |
| |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask=0; |
int ny = dims[1]; |
|
int i = 0; |
|
int j = 0; |
|
int count_mask = 0; |
|
double sum = 0.0; |
|
double sum2 = 0.0; |
|
double err = 0.0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
| |
float sum,sum2,sum_err=0.0; |
|
|
|
for (i = 0; i < nx; i++) | for (i = 0; i < nx; i++) |
{ | { |
for (j = 0; j < ny; j++) | for (j = 0; j < ny; j++) |
Line 987 int computeHelicity(float *jz_err, float |
|
Line 797 int computeHelicity(float *jz_err, float |
|
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
if isnan(jz[j * nx + i]) continue; | if isnan(jz[j * nx + i]) continue; |
if isnan(bz[j * nx + i]) continue; | if isnan(bz[j * nx + i]) continue; |
|
if isnan(jz_err[j * nx + i]) continue; |
|
if isnan(bz_err[j * nx + i]) continue; |
if (bz[j * nx + i] == 0.0) continue; | if (bz[j * nx + i] == 0.0) continue; |
if (jz[j * nx + i] == 0.0) continue; | if (jz[j * nx + i] == 0.0) continue; |
sum += (jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); // contributes to MEANJZH and ABSNJZH | sum += (jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); // contributes to MEANJZH and ABSNJZH |
sum2 += fabs(jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); // contributes to TOTUSJH | sum2 += fabs(jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); // contributes to TOTUSJH |
sum_err += sqrt(((jz_err[j * nx + i]*jz_err[j * nx + i])/(jz[j * nx + i]*jz[j * nx + i])) + ((bz_err[j * nx + i]*bz_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i]))) * fabs(jz[j * nx + i]*bz[j * nx + i]*(1/cdelt1)*(rsun_obs/rsun_ref)); |
err += (jz_err[j * nx + i]*jz_err[j * nx + i]*bz[j * nx + i]*bz[j * nx + i]) + (bz_err[j * nx + i]*bz_err[j * nx + i]*jz[j * nx + i]*jz[j * nx + i]); |
count_mask++; | count_mask++; |
} | } |
} | } |
Line 1000 int computeHelicity(float *jz_err, float |
|
Line 812 int computeHelicity(float *jz_err, float |
|
*total_us_ih_ptr = sum2 ; /* Units are G^2 / m ; keyword is TOTUSJH */ | *total_us_ih_ptr = sum2 ; /* Units are G^2 / m ; keyword is TOTUSJH */ |
*total_abs_ih_ptr = fabs(sum) ; /* Units are G^2 / m ; keyword is ABSNJZH */ | *total_abs_ih_ptr = fabs(sum) ; /* Units are G^2 / m ; keyword is ABSNJZH */ |
| |
*mean_ih_err_ptr = (sqrt(sum_err*sum_err)) / (count_mask*100.) ; // error in the quantity MEANJZH |
*mean_ih_err_ptr = (sqrt(err)/count_mask)*(1/cdelt1)*(rsun_obs/rsun_ref) ; // error in the quantity MEANJZH |
*total_us_ih_err_ptr = (sqrt(sum_err*sum_err)) / (100.) ; // error in the quantity TOTUSJH |
*total_us_ih_err_ptr = (sqrt(err))*(1/cdelt1)*(rsun_obs/rsun_ref) ; // error in the quantity TOTUSJH |
*total_abs_ih_err_ptr = (sqrt(sum_err*sum_err)) / (100.) ; // error in the quantity ABSNJZH |
*total_abs_ih_err_ptr = (sqrt(err))*(1/cdelt1)*(rsun_obs/rsun_ref) ; // error in the quantity ABSNJZH |
| |
printf("MEANJZH=%f\n",*mean_ih_ptr); |
//printf("MEANJZH=%f\n",*mean_ih_ptr); |
printf("MEANJZH_err=%f\n",*mean_ih_err_ptr); |
//printf("MEANJZH_err=%f\n",*mean_ih_err_ptr); |
| |
printf("TOTUSJH=%f\n",*total_us_ih_ptr); |
//printf("TOTUSJH=%f\n",*total_us_ih_ptr); |
printf("TOTUSJH_err=%f\n",*total_us_ih_err_ptr); |
//printf("TOTUSJH_err=%f\n",*total_us_ih_err_ptr); |
| |
printf("ABSNJZH=%f\n",*total_abs_ih_ptr); |
//printf("ABSNJZH=%f\n",*total_abs_ih_ptr); |
printf("ABSNJZH_err=%f\n",*total_abs_ih_err_ptr); |
//printf("ABSNJZH_err=%f\n",*total_abs_ih_err_ptr); |
| |
return 0; | return 0; |
} | } |
Line 1031 int computeSumAbsPerPolarity(float *jz_e |
|
Line 843 int computeSumAbsPerPolarity(float *jz_e |
|
int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) | int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) |
| |
{ | { |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask=0; |
int ny = dims[1]; |
|
int i=0; |
|
int j=0; |
|
int count_mask=0; |
|
double sum1=0.0; |
|
double sum2=0.0; |
|
double err=0.0; |
|
*totaljzptr=0.0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
| |
*totaljzptr=0.0; |
|
float sum1,sum2,err=0.0; |
|
|
|
for (i = 0; i < nx; i++) | for (i = 0; i < nx; i++) |
{ | { |
for (j = 0; j < ny; j++) | for (j = 0; j < ny; j++) |
{ | { |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
if isnan(bz[j * nx + i]) continue; | if isnan(bz[j * nx + i]) continue; |
|
if isnan(jz[j * nx + i]) continue; |
if (bz[j * nx + i] > 0) sum1 += ( jz[j * nx + i])*(1/cdelt1)*(0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs); | if (bz[j * nx + i] > 0) sum1 += ( jz[j * nx + i])*(1/cdelt1)*(0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs); |
if (bz[j * nx + i] <= 0) sum2 += ( jz[j * nx + i])*(1/cdelt1)*(0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs); | if (bz[j * nx + i] <= 0) sum2 += ( jz[j * nx + i])*(1/cdelt1)*(0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs); |
err += (jz_err[j * nx + i]*jz_err[j * nx + i]); | err += (jz_err[j * nx + i]*jz_err[j * nx + i]); |
Line 1054 int computeSumAbsPerPolarity(float *jz_e |
|
Line 871 int computeSumAbsPerPolarity(float *jz_e |
|
| |
*totaljzptr = fabs(sum1) + fabs(sum2); /* Units are A */ | *totaljzptr = fabs(sum1) + fabs(sum2); /* Units are A */ |
*totaljz_err_ptr = sqrt(err)*(1/cdelt1)*fabs((0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs)); | *totaljz_err_ptr = sqrt(err)*(1/cdelt1)*fabs((0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs)); |
printf("SAVNCPP=%g\n",*totaljzptr); |
//printf("SAVNCPP=%g\n",*totaljzptr); |
printf("SAVNCPP_err=%g\n",*totaljz_err_ptr); |
//printf("SAVNCPP_err=%g\n",*totaljz_err_ptr); |
| |
return 0; | return 0; |
} | } |
Line 1063 int computeSumAbsPerPolarity(float *jz_e |
|
Line 880 int computeSumAbsPerPolarity(float *jz_e |
|
/*===========================================*/ | /*===========================================*/ |
/* Example function 13: Mean photospheric excess magnetic energy and total photospheric excess magnetic energy density */ | /* Example function 13: Mean photospheric excess magnetic energy and total photospheric excess magnetic energy density */ |
// The units for magnetic energy density in cgs are ergs per cubic centimeter. The formula B^2/8*PI integrated over all space, dV | // The units for magnetic energy density in cgs are ergs per cubic centimeter. The formula B^2/8*PI integrated over all space, dV |
// automatically yields erg per cubic centimeter for an input B in Gauss. |
// automatically yields erg per cubic centimeter for an input B in Gauss. Note that the 8*PI can come out of the integral; thus, |
|
// the integral is over B^2 dV and the 8*PI is divided at the end. |
// | // |
// Total magnetic energy is the magnetic energy density times dA, or the area, and the units are thus ergs/cm. To convert | // Total magnetic energy is the magnetic energy density times dA, or the area, and the units are thus ergs/cm. To convert |
// ergs per centimeter cubed to ergs per centimeter, simply multiply by the area per pixel in cm: | // ergs per centimeter cubed to ergs per centimeter, simply multiply by the area per pixel in cm: |
Line 1077 int computeFreeEnergy(float *bx_err, flo |
|
Line 895 int computeFreeEnergy(float *bx_err, flo |
|
float cdelt1, double rsun_ref, double rsun_obs) | float cdelt1, double rsun_ref, double rsun_obs) |
| |
{ | { |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask=0; |
int ny = dims[1]; |
|
int i = 0; |
if (nx <= 0 || ny <= 0) return 1; |
int j = 0; |
|
int count_mask = 0; |
|
double sum = 0.0; |
|
double sum1 = 0.0; |
|
double err = 0.0; |
*totpotptr=0.0; | *totpotptr=0.0; |
*meanpotptr=0.0; | *meanpotptr=0.0; |
float sum,err=0.0; |
|
|
if (nx <= 0 || ny <= 0) return 1; |
| |
for (i = 0; i < nx; i++) | for (i = 0; i < nx; i++) |
{ | { |
Line 1093 int computeFreeEnergy(float *bx_err, flo |
|
Line 915 int computeFreeEnergy(float *bx_err, flo |
|
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
if isnan(bx[j * nx + i]) continue; | if isnan(bx[j * nx + i]) continue; |
if isnan(by[j * nx + i]) continue; | if isnan(by[j * nx + i]) continue; |
sum += ( ((bpx[j * nx + i] - bx[j * nx + i])*(bpx[j * nx + i] - bx[j * nx + i])) + ((bpy[j * nx + i] - by[j * nx + i])*(bpy[j * nx + i] - by[j * nx + i])) ) / 8.*PI; |
sum += ( ((bx[j * nx + i] - bpx[j * nx + i])*(bx[j * nx + i] - bpx[j * nx + i])) + ((by[j * nx + i] - bpy[j * nx + i])*(by[j * nx + i] - bpy[j * nx + i])) )*(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0); |
err += (4.0*bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i]) + (4.0*by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i]); |
sum1 += ( ((bx[j * nx + i] - bpx[j * nx + i])*(bx[j * nx + i] - bpx[j * nx + i])) + ((by[j * nx + i] - bpy[j * nx + i])*(by[j * nx + i] - bpy[j * nx + i])) ); |
//err += 2.0*bz_err[j * nx + i]*bz_err[j * nx + i]; |
err += 4.0*(bx[j * nx + i] - bpx[j * nx + i])*(bx[j * nx + i] - bpx[j * nx + i])*(bx_err[j * nx + i]*bx_err[j * nx + i]) + |
|
4.0*(by[j * nx + i] - bpy[j * nx + i])*(by[j * nx + i] - bpy[j * nx + i])*(by_err[j * nx + i]*by_err[j * nx + i]); |
count_mask++; | count_mask++; |
} | } |
} | } |
| |
*meanpotptr = (sum) / (count_mask); /* Units are ergs per cubic centimeter */ |
/* Units of meanpotptr are ergs per centimeter */ |
|
*meanpotptr = (sum1) / (count_mask*8.*PI) ; /* Units are ergs per cubic centimeter */ |
*meanpot_err_ptr = (sqrt(err)) / (count_mask*8.*PI); // error in the quantity (sum)/(count_mask) | *meanpot_err_ptr = (sqrt(err)) / (count_mask*8.*PI); // error in the quantity (sum)/(count_mask) |
//*mean_derivative_bz_err_ptr = (sqrt(err))/(count_mask); // error in the quantity (sum)/(count_mask) |
|
| |
/* Units of sum are ergs/cm^3, units of factor are cm^2/pix^2; therefore, units of totpotptr are ergs per centimeter */ | /* Units of sum are ergs/cm^3, units of factor are cm^2/pix^2; therefore, units of totpotptr are ergs per centimeter */ |
*totpotptr = sum*(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0*(1/8.*PI)) ; |
*totpotptr = (sum)/(8.*PI); |
*totpot_err_ptr = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0*(1/8.*PI)); |
*totpot_err_ptr = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0*(1/(8.*PI))); |
| |
printf("MEANPOT=%g\n",*meanpotptr); |
//printf("MEANPOT=%g\n",*meanpotptr); |
printf("MEANPOT_err=%g\n",*meanpot_err_ptr); |
//printf("MEANPOT_err=%g\n",*meanpot_err_ptr); |
| |
printf("TOTPOT=%g\n",*totpotptr); |
//printf("TOTPOT=%g\n",*totpotptr); |
printf("TOTPOT_err=%g\n",*totpot_err_ptr); |
//printf("TOTPOT_err=%g\n",*totpot_err_ptr); |
| |
return 0; | return 0; |
} | } |
Line 1120 int computeFreeEnergy(float *bx_err, flo |
|
Line 943 int computeFreeEnergy(float *bx_err, flo |
|
/*===========================================*/ | /*===========================================*/ |
/* Example function 14: Mean 3D shear angle, area with shear greater than 45, mean horizontal shear angle, area with horizontal shear angle greater than 45 */ | /* Example function 14: Mean 3D shear angle, area with shear greater than 45, mean horizontal shear angle, area with horizontal shear angle greater than 45 */ |
| |
int computeShearAngle(float *bx_err, float *by_err, float *bh_err, float *bx, float *by, float *bz, float *bpx, float *bpy, float *bpz, int *dims, |
int computeShearAngle(float *bx_err, float *by_err, float *bz_err, float *bx, float *by, float *bz, float *bpx, float *bpy, float *bpz, int *dims, |
float *meanshear_angleptr, float *meanshear_angle_err_ptr, float *area_w_shear_gt_45ptr, int *mask, int *bitmask) | float *meanshear_angleptr, float *meanshear_angle_err_ptr, float *area_w_shear_gt_45ptr, int *mask, int *bitmask) |
|
|
|
|
{ | { |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j; |
int ny = dims[1]; |
|
int i = 0; |
|
int j = 0; |
|
float count_mask = 0; |
|
float count = 0; |
|
double dotproduct = 0.0; |
|
double magnitude_potential = 0.0; |
|
double magnitude_vector = 0.0; |
|
double shear_angle = 0.0; |
|
double denominator = 0.0; |
|
double term1 = 0.0; |
|
double term2 = 0.0; |
|
double term3 = 0.0; |
|
double sumsum = 0.0; |
|
double err = 0.0; |
|
double part1 = 0.0; |
|
double part2 = 0.0; |
|
double part3 = 0.0; |
|
*area_w_shear_gt_45ptr = 0.0; |
|
*meanshear_angleptr = 0.0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
| |
//*area_w_shear_gt_45ptr=0.0; |
|
//*meanshear_angleptr=0.0; |
|
float dotproduct, magnitude_potential, magnitude_vector, shear_angle,err=0.0, sum = 0.0, count=0.0, count_mask=0.0; |
|
|
|
for (i = 0; i < nx; i++) | for (i = 0; i < nx; i++) |
{ | { |
for (j = 0; j < ny; j++) | for (j = 0; j < ny; j++) |
Line 1143 int computeShearAngle(float *bx_err, flo |
|
Line 983 int computeShearAngle(float *bx_err, flo |
|
if isnan(bz[j * nx + i]) continue; | if isnan(bz[j * nx + i]) continue; |
if isnan(bx[j * nx + i]) continue; | if isnan(bx[j * nx + i]) continue; |
if isnan(by[j * nx + i]) continue; | if isnan(by[j * nx + i]) continue; |
/* For mean 3D shear angle, area with shear greater than 45*/ |
if isnan(bx_err[j * nx + i]) continue; |
|
if isnan(by_err[j * nx + i]) continue; |
|
if isnan(bz_err[j * nx + i]) continue; |
|
|
|
/* For mean 3D shear angle, percentage with shear greater than 45*/ |
dotproduct = (bpx[j * nx + i])*(bx[j * nx + i]) + (bpy[j * nx + i])*(by[j * nx + i]) + (bpz[j * nx + i])*(bz[j * nx + i]); | dotproduct = (bpx[j * nx + i])*(bx[j * nx + i]) + (bpy[j * nx + i])*(by[j * nx + i]) + (bpz[j * nx + i])*(bz[j * nx + i]); |
magnitude_potential = sqrt( (bpx[j * nx + i]*bpx[j * nx + i]) + (bpy[j * nx + i]*bpy[j * nx + i]) + (bpz[j * nx + i]*bpz[j * nx + i])); | magnitude_potential = sqrt( (bpx[j * nx + i]*bpx[j * nx + i]) + (bpy[j * nx + i]*bpy[j * nx + i]) + (bpz[j * nx + i]*bpz[j * nx + i])); |
magnitude_vector = sqrt( (bx[j * nx + i]*bx[j * nx + i]) + (by[j * nx + i]*by[j * nx + i]) + (bz[j * nx + i]*bz[j * nx + i]) ); | magnitude_vector = sqrt( (bx[j * nx + i]*bx[j * nx + i]) + (by[j * nx + i]*by[j * nx + i]) + (bz[j * nx + i]*bz[j * nx + i]) ); |
|
//printf("dotproduct=%f\n",dotproduct); |
|
//printf("magnitude_potential=%f\n",magnitude_potential); |
|
//printf("magnitude_vector=%f\n",magnitude_vector); |
|
|
shear_angle = acos(dotproduct/(magnitude_potential*magnitude_vector))*(180./PI); | shear_angle = acos(dotproduct/(magnitude_potential*magnitude_vector))*(180./PI); |
|
sumsum += shear_angle; |
|
//printf("shear_angle=%f\n",shear_angle); |
count ++; | count ++; |
sum += shear_angle ; |
|
err += -(1./(1.- sqrt(bx_err[j * nx + i]*bx_err[j * nx + i]+by_err[j * nx + i]*by_err[j * nx + i]+bh_err[j * nx + i]*bh_err[j * nx + i]))); |
|
if (shear_angle > 45) count_mask ++; | if (shear_angle > 45) count_mask ++; |
|
|
|
// For the error analysis |
|
|
|
term1 = bx[j * nx + i]*by[j * nx + i]*bpy[j * nx + i] - by[j * nx + i]*by[j * nx + i]*bpx[j * nx + i] + bz[j * nx + i]*bx[j * nx + i]*bpz[j * nx + i] - bz[j * nx + i]*bz[j * nx + i]*bpx[j * nx + i]; |
|
term2 = bx[j * nx + i]*bx[j * nx + i]*bpy[j * nx + i] - bx[j * nx + i]*by[j * nx + i]*bpx[j * nx + i] + bx[j * nx + i]*bz[j * nx + i]*bpy[j * nx + i] - bz[j * nx + i]*by[j * nx + i]*bpz[j * nx + i]; |
|
term3 = bx[j * nx + i]*bx[j * nx + i]*bpz[j * nx + i] - bx[j * nx + i]*bz[j * nx + i]*bpx[j * nx + i] + by[j * nx + i]*by[j * nx + i]*bpz[j * nx + i] - by[j * nx + i]*bz[j * nx + i]*bpy[j * nx + i]; |
|
|
|
part1 = bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]; |
|
part2 = bpx[j * nx + i]*bpx[j * nx + i] + bpy[j * nx + i]*bpy[j * nx + i] + bpz[j * nx + i]*bpz[j * nx + i]; |
|
part3 = bx[j * nx + i]*bpx[j * nx + i] + by[j * nx + i]*bpy[j * nx + i] + bz[j * nx + i]*bpz[j * nx + i]; |
|
|
|
// denominator is squared |
|
denominator = part1*part1*part1*part2*(1.0-((part3*part3)/(part1*part2))); |
|
|
|
err = (term1*term1*bx_err[j * nx + i]*bx_err[j * nx + i])/(denominator) + |
|
(term1*term1*bx_err[j * nx + i]*bx_err[j * nx + i])/(denominator) + |
|
(term1*term1*bx_err[j * nx + i]*bx_err[j * nx + i])/(denominator) ; |
|
|
} | } |
} | } |
|
|
/* For mean 3D shear angle, area with shear greater than 45*/ | /* For mean 3D shear angle, area with shear greater than 45*/ |
*meanshear_angleptr = (sum)/(count); /* Units are degrees */ |
*meanshear_angleptr = (sumsum)/(count); /* Units are degrees */ |
*meanshear_angle_err_ptr = (sqrt(err*err))/(count); // error in the quantity (sum)/(count_mask) |
*meanshear_angle_err_ptr = (sqrt(err)/count_mask)*(180./PI); |
*area_w_shear_gt_45ptr = (count_mask/(count))*(100.);/* The area here is a fractional area -- the % of the total area */ |
|
|
/* The area here is a fractional area -- the % of the total area. This has no error associated with it. */ |
|
*area_w_shear_gt_45ptr = (count_mask/(count))*(100.0); |
|
|
|
//printf("MEANSHR=%f\n",*meanshear_angleptr); |
|
//printf("MEANSHR_err=%f\n",*meanshear_angle_err_ptr); |
|
//printf("SHRGT45=%f\n",*area_w_shear_gt_45ptr); |
|
|
|
return 0; |
|
} |
|
|
|
/*===========================================*/ |
|
/* Example function 15: R parameter as defined in Schrijver, 2007 */ |
|
// |
|
// Note that there is a restriction on the function fsample() |
|
// If the following occurs: |
|
// nx_out > floor((ny_in-1)/scale + 1) |
|
// ny_out > floor((ny_in-1)/scale + 1), |
|
// where n*_out are the dimensions of the output array and n*_in |
|
// are the dimensions of the input array, fsample() will usually result |
|
// in a segfault (though not always, depending on how the segfault was accessed.) |
|
|
|
int computeR(float *bz_err, float *los, int *dims, float *Rparam, float cdelt1, |
|
float *rim, float *p1p0, float *p1n0, float *p1p, float *p1n, float *p1, |
|
float *pmap, int nx1, int ny1, |
|
int scale, float *p1pad, int nxp, int nyp, float *pmapn) |
|
|
|
{ |
|
int nx = dims[0]; |
|
int ny = dims[1]; |
|
int i = 0; |
|
int j = 0; |
|
int index, index1; |
|
double sum = 0.0; |
|
double err = 0.0; |
|
*Rparam = 0.0; |
|
struct fresize_struct fresboxcar, fresgauss; |
|
struct fint_struct fints; |
|
float sigma = 10.0/2.3548; |
|
|
|
// set up convolution kernels |
|
init_fresize_boxcar(&fresboxcar,1,1); |
|
init_fresize_gaussian(&fresgauss,sigma,20,1); |
|
|
|
// =============== [STEP 1] =============== |
|
// bin the line-of-sight magnetogram down by a factor of scale |
|
fsample(los, rim, nx, ny, nx, nx1, ny1, nx1, scale, 0, 0, 0.0); |
|
|
|
// =============== [STEP 2] =============== |
|
// identify positive and negative pixels greater than +/- 150 gauss |
|
// and label those pixels with a 1.0 in arrays p1p0 and p1n0 |
|
for (i = 0; i < nx1; i++) |
|
{ |
|
for (j = 0; j < ny1; j++) |
|
{ |
|
index = j * nx1 + i; |
|
if (rim[index] > 150) |
|
p1p0[index]=1.0; |
|
else |
|
p1p0[index]=0.0; |
|
if (rim[index] < -150) |
|
p1n0[index]=1.0; |
|
else |
|
p1n0[index]=0.0; |
|
} |
|
} |
|
|
|
// =============== [STEP 3] =============== |
|
// smooth each of the negative and positive pixel bitmaps |
|
fresize(&fresboxcar, p1p0, p1p, nx1, ny1, nx1, nx1, ny1, nx1, 0, 0, 0.0); |
|
fresize(&fresboxcar, p1n0, p1n, nx1, ny1, nx1, nx1, ny1, nx1, 0, 0, 0.0); |
|
|
|
// =============== [STEP 4] =============== |
|
// find the pixels for which p1p and p1n are both equal to 1. |
|
// this defines the polarity inversion line |
|
for (i = 0; i < nx1; i++) |
|
{ |
|
for (j = 0; j < ny1; j++) |
|
{ |
|
index = j * nx1 + i; |
|
if ((p1p[index] > 0.0) && (p1n[index] > 0.0)) |
|
p1[index]=1.0; |
|
else |
|
p1[index]=0.0; |
|
} |
|
} |
|
|
|
// pad p1 with zeroes so that the gaussian colvolution in step 5 |
|
// does not cut off data within hwidth of the edge |
|
|
|
// step i: zero p1pad |
|
for (i = 0; i < nxp; i++) |
|
{ |
|
for (j = 0; j < nyp; j++) |
|
{ |
|
index = j * nxp + i; |
|
p1pad[index]=0.0; |
|
} |
|
} |
|
|
|
// step ii: place p1 at the center of p1pad |
|
for (i = 0; i < nx1; i++) |
|
{ |
|
for (j = 0; j < ny1; j++) |
|
{ |
|
index = j * nx1 + i; |
|
index1 = (j+20) * nxp + (i+20); |
|
p1pad[index1]=p1[index]; |
|
} |
|
} |
|
|
|
// =============== [STEP 5] =============== |
|
// convolve the polarity inversion line map with a gaussian |
|
// to identify the region near the plarity inversion line |
|
// the resultant array is called pmap |
|
fresize(&fresgauss, p1pad, pmap, nxp, nyp, nxp, nxp, nyp, nxp, 0, 0, 0.0); |
|
|
|
|
|
// select out the nx1 x ny1 non-padded array within pmap |
|
for (i = 0; i < nx1; i++) |
|
{ |
|
for (j = 0; j < ny1; j++) |
|
{ |
|
index = j * nx1 + i; |
|
index1 = (j+20) * nxp + (i+20); |
|
pmapn[index]=pmap[index1]; |
|
} |
|
} |
|
|
|
// =============== [STEP 6] =============== |
|
// the R parameter is calculated |
|
for (i = 0; i < nx1; i++) |
|
{ |
|
for (j = 0; j < ny1; j++) |
|
{ |
|
index = j * nx1 + i; |
|
sum += pmapn[index]*abs(rim[index]); |
|
} |
|
} |
| |
printf("MEANSHR=%f\n",*meanshear_angleptr); |
if (sum < 1.0) |
printf("MEANSHR_err=%f\n",*meanshear_angle_err_ptr); |
*Rparam = 0.0; |
|
else |
|
*Rparam = log10(sum); |
|
|
|
free_fresize(&fresboxcar); |
|
free_fresize(&fresgauss); |
| |
return 0; | return 0; |
|
|
} | } |
| |
|
/*===========================================*/ |
|
/* Example function 16: Lorentz force as defined in Fisher, 2012 */ |
|
// |
|
// This calculation is adapted from Xudong's code |
|
// at /proj/cgem/lorentz/apps/lorentz.c |
|
|
|
int computeLorentz(float *bx, float *by, float *bz, float *fx, float *fy, float *fz, int *dims, |
|
float *totfx_ptr, float *totfy_ptr, float *totfz_ptr, float *totbsq_ptr, |
|
float *epsx_ptr, float *epsy_ptr, float *epsz_ptr, int *mask, int *bitmask, |
|
float cdelt1, double rsun_ref, double rsun_obs) |
|
|
|
{ |
|
|
|
int nx = dims[0]; |
|
int ny = dims[1]; |
|
int nxny = nx*ny; |
|
int j = 0; |
|
int index; |
|
double totfx = 0, totfy = 0, totfz = 0; |
|
double bsq = 0, totbsq = 0; |
|
double epsx = 0, epsy = 0, epsz = 0; |
|
double area = cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0; |
|
double k_h = -1.0 * area / (4. * PI) / 1.0e20; |
|
double k_z = area / (8. * PI) / 1.0e20; |
|
|
|
/* Multiplier */ |
|
float vectorMulti[] = {1.,-1.,1.}; |
|
|
|
if (nx <= 0 || ny <= 0) return 1; |
|
|
|
for (int i = 0; i < nxny; i++) |
|
{ |
|
if ( mask[i] < 70 || bitmask[i] < 30 ) continue; |
|
if isnan(bx[i]) continue; |
|
if isnan(by[i]) continue; |
|
if isnan(bz[i]) continue; |
|
fx[i] = (bx[i] * vectorMulti[0]) * (bz[i] * vectorMulti[2]) * k_h; |
|
fy[i] = (by[i] * vectorMulti[1]) * (bz[i] * vectorMulti[2]) * k_h; |
|
fz[i] = (bx[i] * bx[i] + by[i] * by[i] - bz[i] * bz[i]) * k_z; |
|
bsq = bx[i] * bx[i] + by[i] * by[i] + bz[i] * bz[i]; |
|
totfx += fx[i]; totfy += fy[i]; totfz += fz[i]; |
|
totbsq += bsq; |
|
} |
|
|
|
*totfx_ptr = totfx; |
|
*totfy_ptr = totfy; |
|
*totfz_ptr = totfz; |
|
*totbsq_ptr = totbsq; |
|
*epsx_ptr = (totfx / k_h) / totbsq; |
|
*epsy_ptr = (totfy / k_h) / totbsq; |
|
*epsz_ptr = (totfz / k_z) / totbsq; |
|
|
|
return 0; |
|
|
|
} |
| |
/*==================KEIJI'S CODE =========================*/ | /*==================KEIJI'S CODE =========================*/ |
| |
Line 1282 void greenpot(float *bx, float *by, floa |
|
Line 1347 void greenpot(float *bx, float *by, floa |
|
| |
| |
/*===========END OF KEIJI'S CODE =========================*/ | /*===========END OF KEIJI'S CODE =========================*/ |
|
|
|
char *sw_functions_version() // Returns CVS version of sw_functions.c |
|
{ |
|
return strdup("$Id"); |
|
} |
|
|
/* ---------------- end of this file ----------------*/ | /* ---------------- end of this file ----------------*/ |