version 1.14, 2013/07/04 02:16:52
|
version 1.35, 2015/03/02 21:41:31
|
|
|
MEANPOT Mean photospheric excess magnetic energy density in ergs per cubic centimeter | MEANPOT Mean photospheric excess magnetic energy density in ergs per cubic centimeter |
TOTPOT Total photospheric magnetic energy density in ergs per cubic centimeter | TOTPOT Total photospheric magnetic energy density in ergs per cubic centimeter |
MEANSHR Mean shear angle (measured using Btotal) in degrees | MEANSHR Mean shear angle (measured using Btotal) in degrees |
|
R_VALUE Karel Schrijver's R parameter |
| |
The indices are calculated on the pixels in which the conf_disambig segment is greater than 70 and | The indices are calculated on the pixels in which the conf_disambig segment is greater than 70 and |
pixels in which the bitmap segment is greater than 30. These ranges are selected because the CCD | pixels in which the bitmap segment is greater than 30. These ranges are selected because the CCD |
coordinate bitmaps are interpolated. |
coordinate bitmaps are interpolated for certain data (at the time of this CVS submit, all data |
|
prior to 2013.08.21_17:24:00_TAI contain interpolated bitmaps; data post-2013.08.21_17:24:00_TAI |
|
contain nearest-neighbor bitmaps). |
| |
In the CCD coordinates, this means that we are selecting the pixels that equal 90 in conf_disambig | In the CCD coordinates, this means that we are selecting the pixels that equal 90 in conf_disambig |
and the pixels that equal 33 or 44 in bitmap. Here are the definitions of the pixel values: |
and the pixels that equal 33 or 34 in bitmap. Here are the definitions of the pixel values: |
| |
For conf_disambig: | For conf_disambig: |
50 : not all solutions agree (weak field method applied) | 50 : not all solutions agree (weak field method applied) |
|
|
| |
Written by Monica Bobra 15 August 2012 | Written by Monica Bobra 15 August 2012 |
Potential Field code (appended) written by Keiji Hayashi | Potential Field code (appended) written by Keiji Hayashi |
|
Error analysis modification 21 October 2013 |
| |
===========================================*/ | ===========================================*/ |
#include <math.h> | #include <math.h> |
|
|
// To convert G to G*cm^2, simply multiply by the number of square centimeters per pixel. | // To convert G to G*cm^2, simply multiply by the number of square centimeters per pixel. |
// As an order of magnitude estimate, we can assign 0.5 to CDELT1 and 722500m/arcsec to (RSUN_REF/RSUN_OBS). | // As an order of magnitude estimate, we can assign 0.5 to CDELT1 and 722500m/arcsec to (RSUN_REF/RSUN_OBS). |
// (Gauss/pix^2)(CDELT1)^2(RSUN_REF/RSUN_OBS)^2(100.cm/m)^2 | // (Gauss/pix^2)(CDELT1)^2(RSUN_REF/RSUN_OBS)^2(100.cm/m)^2 |
// =(Gauss/pix^2)(0.5 arcsec/pix)^2(722500m/arcsec)^2(100cm/m)^2 |
// =Gauss*cm^2 |
// =(1.30501e15)Gauss*cm^2 |
|
|
|
// The disambig mask value selects only the pixels with values of 5 or 7 -- that is, |
|
// 5: pixels for which the radial acute disambiguation solution was chosen |
|
// 7: pixels for which the radial acute and NRWA disambiguation agree |
|
| |
int computeAbsFlux(float *bz_err, float *bz, int *dims, float *absFlux, | int computeAbsFlux(float *bz_err, float *bz, int *dims, float *absFlux, |
float *mean_vf_ptr, float *mean_vf_err_ptr, float *count_mask_ptr, int *mask, | float *mean_vf_ptr, float *mean_vf_err_ptr, float *count_mask_ptr, int *mask, |
Line 78 int computeAbsFlux(float *bz_err, float |
|
Line 77 int computeAbsFlux(float *bz_err, float |
|
int i=0; | int i=0; |
int j=0; | int j=0; |
int count_mask=0; | int count_mask=0; |
float sum=0.0; |
double sum = 0.0; |
float err=0.0; |
double err = 0.0; |
*absFlux = 0.0; | *absFlux = 0.0; |
*mean_vf_ptr = 0.0; | *mean_vf_ptr = 0.0; |
| |
Line 93 int computeAbsFlux(float *bz_err, float |
|
Line 92 int computeAbsFlux(float *bz_err, float |
|
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
if isnan(bz[j * nx + i]) continue; | if isnan(bz[j * nx + i]) continue; |
sum += (fabs(bz[j * nx + i])); | sum += (fabs(bz[j * nx + i])); |
//printf("i,j,bz[j * nx + i]=%d,%d,%f\n",i,j,bz[j * nx + i]); |
|
err += bz_err[j * nx + i]*bz_err[j * nx + i]; | err += bz_err[j * nx + i]*bz_err[j * nx + i]; |
count_mask++; | count_mask++; |
} | } |
Line 102 int computeAbsFlux(float *bz_err, float |
|
Line 100 int computeAbsFlux(float *bz_err, float |
|
*mean_vf_ptr = sum*cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0; | *mean_vf_ptr = sum*cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0; |
*mean_vf_err_ptr = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0); // error in the unsigned flux | *mean_vf_err_ptr = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0); // error in the unsigned flux |
*count_mask_ptr = count_mask; | *count_mask_ptr = count_mask; |
printf("cdelt1=%f\n",cdelt1); |
|
printf("rsun_obs=%f\n",rsun_obs); |
|
printf("rsun_ref=%f\n",rsun_ref); |
|
printf("CMASK=%g\n",*count_mask_ptr); |
|
printf("USFLUX=%g\n",*mean_vf_ptr); |
|
printf("sum=%f\n",sum); |
|
printf("USFLUX_err=%g\n",*mean_vf_err_ptr); |
|
return 0; | return 0; |
} | } |
| |
Line 126 int computeBh(float *bx_err, float *by_e |
|
Line 117 int computeBh(float *bx_err, float *by_e |
|
int i=0; | int i=0; |
int j=0; | int j=0; |
int count_mask=0; | int count_mask=0; |
float sum=0.0; |
double sum = 0.0; |
*mean_hf_ptr = 0.0; | *mean_hf_ptr = 0.0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
Line 135 int computeBh(float *bx_err, float *by_e |
|
Line 126 int computeBh(float *bx_err, float *by_e |
|
{ | { |
for (j = 0; j < ny; j++) | for (j = 0; j < ny; j++) |
{ | { |
if isnan(bx[j * nx + i]) continue; |
if isnan(bx[j * nx + i]) |
if isnan(by[j * nx + i]) continue; |
{ |
|
bh[j * nx + i] = NAN; |
|
bh_err[j * nx + i] = NAN; |
|
continue; |
|
} |
|
if isnan(by[j * nx + i]) |
|
{ |
|
bh[j * nx + i] = NAN; |
|
bh_err[j * nx + i] = NAN; |
|
continue; |
|
} |
bh[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] ); | bh[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] ); |
sum += bh[j * nx + i]; | sum += bh[j * nx + i]; |
bh_err[j * nx + i]=sqrt( bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i] + by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i])/ bh[j * nx + i]; | bh_err[j * nx + i]=sqrt( bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i] + by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i])/ bh[j * nx + i]; |
Line 152 int computeBh(float *bx_err, float *by_e |
|
Line 153 int computeBh(float *bx_err, float *by_e |
|
/*===========================================*/ | /*===========================================*/ |
/* Example function 3: Calculate Gamma in units of degrees */ | /* Example function 3: Calculate Gamma in units of degrees */ |
// Native units of atan(x) are in radians; to convert from radians to degrees, multiply by (180./PI) | // Native units of atan(x) are in radians; to convert from radians to degrees, multiply by (180./PI) |
// Redo calculation in radians for error analysis (since derivatives are only true in units of radians). |
// |
|
// Error analysis calculations are done in radians (since derivatives are only true in units of radians), |
|
// and multiplied by (180./PI) at the end for consistency in units. |
| |
int computeGamma(float *bz_err, float *bh_err, float *bx, float *by, float *bz, float *bh, int *dims, | int computeGamma(float *bz_err, float *bh_err, float *bx, float *by, float *bz, float *bh, int *dims, |
float *mean_gamma_ptr, float *mean_gamma_err_ptr, int *mask, int *bitmask) | float *mean_gamma_ptr, float *mean_gamma_err_ptr, int *mask, int *bitmask) |
Line 162 int computeGamma(float *bz_err, float *b |
|
Line 165 int computeGamma(float *bz_err, float *b |
|
int i=0; | int i=0; |
int j=0; | int j=0; |
int count_mask=0; | int count_mask=0; |
float sum=0.0; |
double sum = 0.0; |
float err=0.0; |
double err = 0.0; |
float err_value=0.0; |
|
*mean_gamma_ptr=0.0; | *mean_gamma_ptr=0.0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
Line 179 int computeGamma(float *bz_err, float *b |
|
Line 181 int computeGamma(float *bz_err, float *b |
|
if isnan(bz[j * nx + i]) continue; | if isnan(bz[j * nx + i]) continue; |
if isnan(bz_err[j * nx + i]) continue; | if isnan(bz_err[j * nx + i]) continue; |
if isnan(bh_err[j * nx + i]) continue; | if isnan(bh_err[j * nx + i]) continue; |
|
if isnan(bh[j * nx + i]) continue; |
if (bz[j * nx + i] == 0) continue; | if (bz[j * nx + i] == 0) continue; |
sum += (atan(fabs(bz[j * nx + i]/bh[j * nx + i] )))*(180./PI); |
sum += fabs(atan(bh[j * nx + i]/fabs(bz[j * nx + i])))*(180./PI); |
err += (( sqrt ( ((bz_err[j * nx + i]*bz_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i])) + ((bh_err[j * nx + i]*bh_err[j * nx + i])/(bh[j * nx + i]*bh[j * nx + i]))) * fabs(bz[j * nx + i]/bh[j * nx + i]) ) / (1 + (bz[j * nx + i]/bh[j * nx + i])*(bz[j * nx + i]/bh[j * nx + i]))) *(180./PI); |
err += (1/(1+((bh[j * nx + i]*bh[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i]))))*(1/(1+((bh[j * nx + i]*bh[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i])))) * |
|
( ((bh_err[j * nx + i]*bh_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i])) + |
|
((bh[j * nx + i]*bh[j * nx + i]*bz_err[j * nx + i]*bz_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i]*bz[j * nx + i]*bz[j * nx + i])) ); |
count_mask++; | count_mask++; |
} | } |
} | } |
} | } |
| |
*mean_gamma_ptr = sum/count_mask; | *mean_gamma_ptr = sum/count_mask; |
*mean_gamma_err_ptr = (sqrt(err*err))/(count_mask*100.0); // error in the quantity (sum)/(count_mask) |
*mean_gamma_err_ptr = (sqrt(err)/(count_mask))*(180./PI); |
printf("MEANGAM=%f\n",*mean_gamma_ptr); |
//printf("MEANGAM=%f\n",*mean_gamma_ptr); |
printf("MEANGAM_err=%f\n",*mean_gamma_err_ptr); |
//printf("MEANGAM_err=%f\n",*mean_gamma_err_ptr); |
return 0; | return 0; |
} | } |
| |
Line 213 int computeB_total(float *bx_err, float |
|
Line 218 int computeB_total(float *bx_err, float |
|
{ | { |
for (j = 0; j < ny; j++) | for (j = 0; j < ny; j++) |
{ | { |
if isnan(bx[j * nx + i]) continue; |
if isnan(bx[j * nx + i]) |
if isnan(by[j * nx + i]) continue; |
{ |
if isnan(bz[j * nx + i]) continue; |
bt[j * nx + i] = NAN; |
|
bt_err[j * nx + i] = NAN; |
|
continue; |
|
} |
|
if isnan(by[j * nx + i]) |
|
{ |
|
bt[j * nx + i] = NAN; |
|
bt_err[j * nx + i] = NAN; |
|
continue; |
|
} |
|
if isnan(bz[j * nx + i]) |
|
{ |
|
bt[j * nx + i] = NAN; |
|
bt_err[j * nx + i] = NAN; |
|
continue; |
|
} |
bt[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]); | bt[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]); |
bt_err[j * nx + i]=sqrt(bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i] + by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]*bz_err[j * nx + i]*bz_err[j * nx + i] )/bt[j * nx + i]; | bt_err[j * nx + i]=sqrt(bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i] + by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]*bz_err[j * nx + i]*bz_err[j * nx + i] )/bt[j * nx + i]; |
} | } |
Line 226 int computeB_total(float *bx_err, float |
|
Line 246 int computeB_total(float *bx_err, float |
|
/*===========================================*/ | /*===========================================*/ |
/* Example function 5: Derivative of B_Total SQRT( (dBt/dx)^2 + (dBt/dy)^2 ) */ | /* Example function 5: Derivative of B_Total SQRT( (dBt/dx)^2 + (dBt/dy)^2 ) */ |
| |
int computeBtotalderivative(float *bt, int *dims, float *mean_derivative_btotal_ptr, int *mask, int *bitmask, float *derx_bt, float *dery_bt, float *bt_err, float *mean_derivative_btotal_err_ptr) |
int computeBtotalderivative(float *bt, int *dims, float *mean_derivative_btotal_ptr, int *mask, int *bitmask, float *derx_bt, float *dery_bt, float *bt_err, float *mean_derivative_btotal_err_ptr, float *err_termAt, float *err_termBt) |
{ | { |
| |
int nx = dims[0]; | int nx = dims[0]; |
Line 234 int computeBtotalderivative(float *bt, i |
|
Line 254 int computeBtotalderivative(float *bt, i |
|
int i=0; | int i=0; |
int j=0; | int j=0; |
int count_mask=0; | int count_mask=0; |
float sum=0.0; |
double sum = 0.0; |
float err = 0.0; |
double err = 0.0; |
*mean_derivative_btotal_ptr = 0.0; | *mean_derivative_btotal_ptr = 0.0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
Line 246 int computeBtotalderivative(float *bt, i |
|
Line 266 int computeBtotalderivative(float *bt, i |
|
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
derx_bt[j * nx + i] = (bt[j * nx + i+1] - bt[j * nx + i-1])*0.5; | derx_bt[j * nx + i] = (bt[j * nx + i+1] - bt[j * nx + i-1])*0.5; |
|
err_termAt[j * nx + i] = (((bt[j * nx + (i+1)]-bt[j * nx + (i-1)])*(bt[j * nx + (i+1)]-bt[j * nx + (i-1)])) * (bt_err[j * nx + (i+1)]*bt_err[j * nx + (i+1)] + bt_err[j * nx + (i-1)]*bt_err[j * nx + (i-1)])) ; |
} | } |
} | } |
| |
Line 255 int computeBtotalderivative(float *bt, i |
|
Line 276 int computeBtotalderivative(float *bt, i |
|
for (j = 1; j <= ny-2; j++) | for (j = 1; j <= ny-2; j++) |
{ | { |
dery_bt[j * nx + i] = (bt[(j+1) * nx + i] - bt[(j-1) * nx + i])*0.5; | dery_bt[j * nx + i] = (bt[(j+1) * nx + i] - bt[(j-1) * nx + i])*0.5; |
|
err_termBt[j * nx + i] = (((bt[(j+1) * nx + i]-bt[(j-1) * nx + i])*(bt[(j+1) * nx + i]-bt[(j-1) * nx + i])) * (bt_err[(j+1) * nx + i]*bt_err[(j+1) * nx + i] + bt_err[(j-1) * nx + i]*bt_err[(j-1) * nx + i])) ; |
} | } |
} | } |
| |
|
/* consider the edges for the arrays that contribute to the variable "sum" in the computation below. |
/* consider the edges */ |
ignore the edges for the error terms as those arrays have been initialized to zero. |
|
this is okay because the error term will ultimately not include the edge pixels as they are selected out by the mask and bitmask arrays.*/ |
i=0; | i=0; |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
Line 284 int computeBtotalderivative(float *bt, i |
|
Line 307 int computeBtotalderivative(float *bt, i |
|
dery_bt[j * nx + i] = ( (3*bt[j * nx + i]) + (-4*bt[(j-1) * nx + i]) - (-bt[(j-2) * nx + i]) )*0.5; | dery_bt[j * nx + i] = ( (3*bt[j * nx + i]) + (-4*bt[(j-1) * nx + i]) - (-bt[(j-2) * nx + i]) )*0.5; |
} | } |
| |
|
// Calculate the sum only |
for (i = 0; i <= nx-1; i++) |
for (i = 1; i <= nx-2; i++) |
{ | { |
for (j = 0; j <= ny-1; j++) |
for (j = 1; j <= ny-2; j++) |
{ | { |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
|
if ( (derx_bt[j * nx + i] + dery_bt[j * nx + i]) == 0) continue; |
|
if isnan(bt[j * nx + i]) continue; |
|
if isnan(bt[(j+1) * nx + i]) continue; |
|
if isnan(bt[(j-1) * nx + i]) continue; |
|
if isnan(bt[j * nx + i-1]) continue; |
|
if isnan(bt[j * nx + i+1]) continue; |
|
if isnan(bt_err[j * nx + i]) continue; |
if isnan(derx_bt[j * nx + i]) continue; | if isnan(derx_bt[j * nx + i]) continue; |
if isnan(dery_bt[j * nx + i]) continue; | if isnan(dery_bt[j * nx + i]) continue; |
sum += sqrt( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] ); /* Units of Gauss */ | sum += sqrt( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] ); /* Units of Gauss */ |
err += (2.0)*bt_err[j * nx + i]*bt_err[j * nx + i]; |
err += err_termBt[j * nx + i] / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] ))+ |
|
err_termAt[j * nx + i] / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] )) ; |
count_mask++; | count_mask++; |
} | } |
} | } |
| |
*mean_derivative_btotal_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram |
*mean_derivative_btotal_ptr = (sum)/(count_mask); |
*mean_derivative_btotal_err_ptr = (sqrt(err))/(count_mask); // error in the quantity (sum)/(count_mask) |
*mean_derivative_btotal_err_ptr = (sqrt(err))/(count_mask); |
printf("MEANGBT=%f\n",*mean_derivative_btotal_ptr); |
//printf("MEANGBT=%f\n",*mean_derivative_btotal_ptr); |
printf("MEANGBT_err=%f\n",*mean_derivative_btotal_err_ptr); |
//printf("MEANGBT_err=%f\n",*mean_derivative_btotal_err_ptr); |
|
|
return 0; | return 0; |
} | } |
| |
Line 309 int computeBtotalderivative(float *bt, i |
|
Line 341 int computeBtotalderivative(float *bt, i |
|
/*===========================================*/ | /*===========================================*/ |
/* Example function 6: Derivative of Bh SQRT( (dBh/dx)^2 + (dBh/dy)^2 ) */ | /* Example function 6: Derivative of Bh SQRT( (dBh/dx)^2 + (dBh/dy)^2 ) */ |
| |
int computeBhderivative(float *bh, float *bh_err, int *dims, float *mean_derivative_bh_ptr, float *mean_derivative_bh_err_ptr, int *mask, int *bitmask, float *derx_bh, float *dery_bh) |
int computeBhderivative(float *bh, float *bh_err, int *dims, float *mean_derivative_bh_ptr, float *mean_derivative_bh_err_ptr, int *mask, int *bitmask, float *derx_bh, float *dery_bh, float *err_termAh, float *err_termBh) |
{ | { |
| |
int nx = dims[0]; | int nx = dims[0]; |
Line 317 int computeBhderivative(float *bh, float |
|
Line 349 int computeBhderivative(float *bh, float |
|
int i=0; | int i=0; |
int j=0; | int j=0; |
int count_mask=0; | int count_mask=0; |
float sum=0.0; |
double sum= 0.0; |
float err =0.0; |
double err =0.0; |
*mean_derivative_bh_ptr = 0.0; | *mean_derivative_bh_ptr = 0.0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
Line 329 int computeBhderivative(float *bh, float |
|
Line 361 int computeBhderivative(float *bh, float |
|
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
derx_bh[j * nx + i] = (bh[j * nx + i+1] - bh[j * nx + i-1])*0.5; | derx_bh[j * nx + i] = (bh[j * nx + i+1] - bh[j * nx + i-1])*0.5; |
|
err_termAh[j * nx + i] = (((bh[j * nx + (i+1)]-bh[j * nx + (i-1)])*(bh[j * nx + (i+1)]-bh[j * nx + (i-1)])) * (bh_err[j * nx + (i+1)]*bh_err[j * nx + (i+1)] + bh_err[j * nx + (i-1)]*bh_err[j * nx + (i-1)])); |
} | } |
} | } |
| |
Line 338 int computeBhderivative(float *bh, float |
|
Line 371 int computeBhderivative(float *bh, float |
|
for (j = 1; j <= ny-2; j++) | for (j = 1; j <= ny-2; j++) |
{ | { |
dery_bh[j * nx + i] = (bh[(j+1) * nx + i] - bh[(j-1) * nx + i])*0.5; | dery_bh[j * nx + i] = (bh[(j+1) * nx + i] - bh[(j-1) * nx + i])*0.5; |
|
err_termBh[j * nx + i] = (((bh[ (j+1) * nx + i]-bh[(j-1) * nx + i])*(bh[(j+1) * nx + i]-bh[(j-1) * nx + i])) * (bh_err[(j+1) * nx + i]*bh_err[(j+1) * nx + i] + bh_err[(j-1) * nx + i]*bh_err[(j-1) * nx + i])); |
} | } |
} | } |
| |
|
/* consider the edges for the arrays that contribute to the variable "sum" in the computation below. |
/* consider the edges */ |
ignore the edges for the error terms as those arrays have been initialized to zero. |
|
this is okay because the error term will ultimately not include the edge pixels as they are selected out by the mask and bitmask arrays.*/ |
i=0; | i=0; |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
Line 373 int computeBhderivative(float *bh, float |
|
Line 408 int computeBhderivative(float *bh, float |
|
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
|
if ( (derx_bh[j * nx + i] + dery_bh[j * nx + i]) == 0) continue; |
|
if isnan(bh[j * nx + i]) continue; |
|
if isnan(bh[(j+1) * nx + i]) continue; |
|
if isnan(bh[(j-1) * nx + i]) continue; |
|
if isnan(bh[j * nx + i-1]) continue; |
|
if isnan(bh[j * nx + i+1]) continue; |
|
if isnan(bh_err[j * nx + i]) continue; |
if isnan(derx_bh[j * nx + i]) continue; | if isnan(derx_bh[j * nx + i]) continue; |
if isnan(dery_bh[j * nx + i]) continue; | if isnan(dery_bh[j * nx + i]) continue; |
sum += sqrt( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] ); /* Units of Gauss */ | sum += sqrt( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] ); /* Units of Gauss */ |
err += (2.0)*bh_err[j * nx + i]*bh_err[j * nx + i]; |
err += err_termBh[j * nx + i] / (16.0*( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] ))+ |
|
err_termAh[j * nx + i] / (16.0*( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] )) ; |
count_mask++; | count_mask++; |
} | } |
} | } |
| |
*mean_derivative_bh_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram | *mean_derivative_bh_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram |
*mean_derivative_bh_err_ptr = (sqrt(err))/(count_mask); // error in the quantity (sum)/(count_mask) | *mean_derivative_bh_err_ptr = (sqrt(err))/(count_mask); // error in the quantity (sum)/(count_mask) |
printf("MEANGBH=%f\n",*mean_derivative_bh_ptr); |
//printf("MEANGBH=%f\n",*mean_derivative_bh_ptr); |
printf("MEANGBH_err=%f\n",*mean_derivative_bh_err_ptr); |
//printf("MEANGBH_err=%f\n",*mean_derivative_bh_err_ptr); |
| |
return 0; | return 0; |
} | } |
Line 392 int computeBhderivative(float *bh, float |
|
Line 435 int computeBhderivative(float *bh, float |
|
/*===========================================*/ | /*===========================================*/ |
/* Example function 7: Derivative of B_vertical SQRT( (dBz/dx)^2 + (dBz/dy)^2 ) */ | /* Example function 7: Derivative of B_vertical SQRT( (dBz/dx)^2 + (dBz/dy)^2 ) */ |
| |
int computeBzderivative(float *bz, float *bz_err, int *dims, float *mean_derivative_bz_ptr, float *mean_derivative_bz_err_ptr, int *mask, int *bitmask, float *derx_bz, float *dery_bz) |
int computeBzderivative(float *bz, float *bz_err, int *dims, float *mean_derivative_bz_ptr, float *mean_derivative_bz_err_ptr, int *mask, int *bitmask, float *derx_bz, float *dery_bz, float *err_termA, float *err_termB) |
{ | { |
| |
int nx = dims[0]; | int nx = dims[0]; |
Line 400 int computeBzderivative(float *bz, float |
|
Line 443 int computeBzderivative(float *bz, float |
|
int i=0; | int i=0; |
int j=0; | int j=0; |
int count_mask=0; | int count_mask=0; |
float sum = 0.0; |
double sum = 0.0; |
float err = 0.0; |
double err = 0.0; |
*mean_derivative_bz_ptr = 0.0; | *mean_derivative_bz_ptr = 0.0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
Line 411 int computeBzderivative(float *bz, float |
|
Line 454 int computeBzderivative(float *bz, float |
|
{ | { |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
if isnan(bz[j * nx + i]) continue; |
|
derx_bz[j * nx + i] = (bz[j * nx + i+1] - bz[j * nx + i-1])*0.5; | derx_bz[j * nx + i] = (bz[j * nx + i+1] - bz[j * nx + i-1])*0.5; |
|
err_termA[j * nx + i] = (((bz[j * nx + (i+1)]-bz[j * nx + (i-1)])*(bz[j * nx + (i+1)]-bz[j * nx + (i-1)])) * (bz_err[j * nx + (i+1)]*bz_err[j * nx + (i+1)] + bz_err[j * nx + (i-1)]*bz_err[j * nx + (i-1)])); |
} | } |
} | } |
| |
Line 421 int computeBzderivative(float *bz, float |
|
Line 464 int computeBzderivative(float *bz, float |
|
{ | { |
for (j = 1; j <= ny-2; j++) | for (j = 1; j <= ny-2; j++) |
{ | { |
if isnan(bz[j * nx + i]) continue; |
|
dery_bz[j * nx + i] = (bz[(j+1) * nx + i] - bz[(j-1) * nx + i])*0.5; | dery_bz[j * nx + i] = (bz[(j+1) * nx + i] - bz[(j-1) * nx + i])*0.5; |
|
err_termB[j * nx + i] = (((bz[(j+1) * nx + i]-bz[(j-1) * nx + i])*(bz[(j+1) * nx + i]-bz[(j-1) * nx + i])) * (bz_err[(j+1) * nx + i]*bz_err[(j+1) * nx + i] + bz_err[(j-1) * nx + i]*bz_err[(j-1) * nx + i])); |
} | } |
} | } |
| |
|
/* consider the edges for the arrays that contribute to the variable "sum" in the computation below. |
/* consider the edges */ |
ignore the edges for the error terms as those arrays have been initialized to zero. |
|
this is okay because the error term will ultimately not include the edge pixels as they are selected out by the mask and bitmask arrays.*/ |
i=0; | i=0; |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
if isnan(bz[j * nx + i]) continue; |
|
derx_bz[j * nx + i] = ( (-3*bz[j * nx + i]) + (4*bz[j * nx + (i+1)]) - (bz[j * nx + (i+2)]) )*0.5; | derx_bz[j * nx + i] = ( (-3*bz[j * nx + i]) + (4*bz[j * nx + (i+1)]) - (bz[j * nx + (i+2)]) )*0.5; |
} | } |
| |
i=nx-1; | i=nx-1; |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
if isnan(bz[j * nx + i]) continue; |
|
derx_bz[j * nx + i] = ( (3*bz[j * nx + i]) + (-4*bz[j * nx + (i-1)]) - (-bz[j * nx + (i-2)]) )*0.5; | derx_bz[j * nx + i] = ( (3*bz[j * nx + i]) + (-4*bz[j * nx + (i-1)]) - (-bz[j * nx + (i-2)]) )*0.5; |
} | } |
| |
j=0; | j=0; |
for (i = 0; i <= nx-1; i++) | for (i = 0; i <= nx-1; i++) |
{ | { |
if isnan(bz[j * nx + i]) continue; |
|
dery_bz[j * nx + i] = ( (-3*bz[j*nx + i]) + (4*bz[(j+1) * nx + i]) - (bz[(j+2) * nx + i]) )*0.5; | dery_bz[j * nx + i] = ( (-3*bz[j*nx + i]) + (4*bz[(j+1) * nx + i]) - (bz[(j+2) * nx + i]) )*0.5; |
} | } |
| |
j=ny-1; | j=ny-1; |
for (i = 0; i <= nx-1; i++) | for (i = 0; i <= nx-1; i++) |
{ | { |
if isnan(bz[j * nx + i]) continue; |
|
dery_bz[j * nx + i] = ( (3*bz[j * nx + i]) + (-4*bz[(j-1) * nx + i]) - (-bz[(j-2) * nx + i]) )*0.5; | dery_bz[j * nx + i] = ( (3*bz[j * nx + i]) + (-4*bz[(j-1) * nx + i]) - (-bz[(j-2) * nx + i]) )*0.5; |
} | } |
| |
Line 461 int computeBzderivative(float *bz, float |
|
Line 501 int computeBzderivative(float *bz, float |
|
{ | { |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
// if ( (derx_bz[j * nx + i]-dery_bz[j * nx + i]) == 0) continue; |
|
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
|
if ( (derx_bz[j * nx + i] + dery_bz[j * nx + i]) == 0) continue; |
if isnan(bz[j * nx + i]) continue; | if isnan(bz[j * nx + i]) continue; |
//if isnan(bz_err[j * nx + i]) continue; |
if isnan(bz[(j+1) * nx + i]) continue; |
|
if isnan(bz[(j-1) * nx + i]) continue; |
|
if isnan(bz[j * nx + i-1]) continue; |
|
if isnan(bz[j * nx + i+1]) continue; |
|
if isnan(bz_err[j * nx + i]) continue; |
if isnan(derx_bz[j * nx + i]) continue; | if isnan(derx_bz[j * nx + i]) continue; |
if isnan(dery_bz[j * nx + i]) continue; | if isnan(dery_bz[j * nx + i]) continue; |
sum += sqrt( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] ); /* Units of Gauss */ | sum += sqrt( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] ); /* Units of Gauss */ |
err += 2.0*bz_err[j * nx + i]*bz_err[j * nx + i]; |
err += err_termB[j * nx + i] / (16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] )) + |
|
err_termA[j * nx + i] / (16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] )) ; |
count_mask++; | count_mask++; |
} | } |
} | } |
| |
*mean_derivative_bz_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram | *mean_derivative_bz_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram |
*mean_derivative_bz_err_ptr = (sqrt(err))/(count_mask); // error in the quantity (sum)/(count_mask) | *mean_derivative_bz_err_ptr = (sqrt(err))/(count_mask); // error in the quantity (sum)/(count_mask) |
printf("MEANGBZ=%f\n",*mean_derivative_bz_ptr); |
//printf("MEANGBZ=%f\n",*mean_derivative_bz_ptr); |
printf("MEANGBZ_err=%f\n",*mean_derivative_bz_err_ptr); |
//printf("MEANGBZ_err=%f\n",*mean_derivative_bz_err_ptr); |
| |
return 0; | return 0; |
} | } |
Line 519 int computeBzderivative(float *bz, float |
|
Line 564 int computeBzderivative(float *bz, float |
|
// float *noiseby, float *noisebz) | // float *noiseby, float *noisebz) |
| |
int computeJz(float *bx_err, float *by_err, float *bx, float *by, int *dims, float *jz, float *jz_err, float *jz_err_squared, | int computeJz(float *bx_err, float *by_err, float *bx, float *by, int *dims, float *jz, float *jz_err, float *jz_err_squared, |
int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery) |
int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery, float *err_term1, float *err_term2) |
| |
| |
{ | { |
Line 528 int computeJz(float *bx_err, float *by_e |
|
Line 573 int computeJz(float *bx_err, float *by_e |
|
int i=0; | int i=0; |
int j=0; | int j=0; |
int count_mask=0; | int count_mask=0; |
float curl=0.0; |
|
float us_i=0.0; |
|
float test_perimeter=0.0; |
|
float mean_curl=0.0; |
|
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
| |
Line 542 int computeJz(float *bx_err, float *by_e |
|
Line 583 int computeJz(float *bx_err, float *by_e |
|
{ | { |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
if isnan(by[j * nx + i]) continue; |
|
derx[j * nx + i] = (by[j * nx + i+1] - by[j * nx + i-1])*0.5; | derx[j * nx + i] = (by[j * nx + i+1] - by[j * nx + i-1])*0.5; |
|
err_term1[j * nx + i] = (by_err[j * nx + i+1])*(by_err[j * nx + i+1]) + (by_err[j * nx + i-1])*(by_err[j * nx + i-1]); |
} | } |
} | } |
| |
Line 551 int computeJz(float *bx_err, float *by_e |
|
Line 592 int computeJz(float *bx_err, float *by_e |
|
{ | { |
for (j = 1; j <= ny-2; j++) | for (j = 1; j <= ny-2; j++) |
{ | { |
if isnan(bx[j * nx + i]) continue; |
|
dery[j * nx + i] = (bx[(j+1) * nx + i] - bx[(j-1) * nx + i])*0.5; | dery[j * nx + i] = (bx[(j+1) * nx + i] - bx[(j-1) * nx + i])*0.5; |
|
err_term2[j * nx + i] = (bx_err[(j+1) * nx + i])*(bx_err[(j+1) * nx + i]) + (bx_err[(j-1) * nx + i])*(bx_err[(j-1) * nx + i]); |
} | } |
} | } |
| |
// consider the edges |
/* consider the edges for the arrays that contribute to the variable "sum" in the computation below. |
|
ignore the edges for the error terms as those arrays have been initialized to zero. |
|
this is okay because the error term will ultimately not include the edge pixels as they are selected out by the mask and bitmask arrays.*/ |
|
|
i=0; | i=0; |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
if isnan(by[j * nx + i]) continue; |
|
derx[j * nx + i] = ( (-3*by[j * nx + i]) + (4*by[j * nx + (i+1)]) - (by[j * nx + (i+2)]) )*0.5; | derx[j * nx + i] = ( (-3*by[j * nx + i]) + (4*by[j * nx + (i+1)]) - (by[j * nx + (i+2)]) )*0.5; |
} | } |
| |
i=nx-1; | i=nx-1; |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
if isnan(by[j * nx + i]) continue; |
|
derx[j * nx + i] = ( (3*by[j * nx + i]) + (-4*by[j * nx + (i-1)]) - (-by[j * nx + (i-2)]) )*0.5; | derx[j * nx + i] = ( (3*by[j * nx + i]) + (-4*by[j * nx + (i-1)]) - (-by[j * nx + (i-2)]) )*0.5; |
} | } |
| |
j=0; | j=0; |
for (i = 0; i <= nx-1; i++) | for (i = 0; i <= nx-1; i++) |
{ | { |
if isnan(bx[j * nx + i]) continue; |
|
dery[j * nx + i] = ( (-3*bx[j*nx + i]) + (4*bx[(j+1) * nx + i]) - (bx[(j+2) * nx + i]) )*0.5; | dery[j * nx + i] = ( (-3*bx[j*nx + i]) + (4*bx[(j+1) * nx + i]) - (bx[(j+2) * nx + i]) )*0.5; |
} | } |
| |
j=ny-1; | j=ny-1; |
for (i = 0; i <= nx-1; i++) | for (i = 0; i <= nx-1; i++) |
{ | { |
if isnan(bx[j * nx + i]) continue; |
|
dery[j * nx + i] = ( (3*bx[j * nx + i]) + (-4*bx[(j-1) * nx + i]) - (-bx[(j-2) * nx + i]) )*0.5; | dery[j * nx + i] = ( (3*bx[j * nx + i]) + (-4*bx[(j-1) * nx + i]) - (-bx[(j-2) * nx + i]) )*0.5; |
} | } |
| |
Line 592 int computeJz(float *bx_err, float *by_e |
|
Line 632 int computeJz(float *bx_err, float *by_e |
|
{ | { |
// calculate jz at all points | // calculate jz at all points |
jz[j * nx + i] = (derx[j * nx + i]-dery[j * nx + i]); // jz is in units of Gauss/pix | jz[j * nx + i] = (derx[j * nx + i]-dery[j * nx + i]); // jz is in units of Gauss/pix |
jz_err[j * nx + i]=0.5*sqrt( (bx_err[(j+1) * nx + i]*bx_err[(j+1) * nx + i]) + (bx_err[(j-1) * nx + i]*bx_err[(j-1) * nx + i]) + |
jz_err[j * nx + i] = 0.5*sqrt( err_term1[j * nx + i] + err_term2[j * nx + i] ) ; |
(by_err[j * nx + (i+1)]*by_err[j * nx + (i+1)]) + (by_err[j * nx + (i-1)]*by_err[j * nx + (i-1)]) ) ; |
|
jz_err_squared[j * nx + i]=(jz_err[j * nx + i]*jz_err[j * nx + i]); | jz_err_squared[j * nx + i]=(jz_err[j * nx + i]*jz_err[j * nx + i]); |
count_mask++; | count_mask++; |
} | } |
} | } |
|
|
return 0; | return 0; |
} | } |
| |
/*===========================================*/ | /*===========================================*/ |
| |
|
|
/* Example function 9: Compute quantities on Jz array */ | /* Example function 9: Compute quantities on Jz array */ |
// Compute mean and total current on Jz array. | // Compute mean and total current on Jz array. |
| |
Line 619 int computeJzsmooth(float *bx, float *by |
|
Line 656 int computeJzsmooth(float *bx, float *by |
|
int i=0; | int i=0; |
int j=0; | int j=0; |
int count_mask=0; | int count_mask=0; |
float curl=0.0; |
double curl = 0.0; |
float us_i=0.0; |
double us_i = 0.0; |
float test_perimeter=0.0; |
double err = 0.0; |
float mean_curl=0.0; |
|
float err=0.0; |
|
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
| |
Line 643 int computeJzsmooth(float *bx, float *by |
|
Line 678 int computeJzsmooth(float *bx, float *by |
|
} | } |
} | } |
| |
/* Calculate mean vertical current density (mean_curl) and total unsigned vertical current (us_i) using smoothed Jz array and continue conditions above */ |
/* Calculate mean vertical current density (mean_jz) and total unsigned vertical current (us_i) using smoothed Jz array and continue conditions above */ |
*mean_jz_ptr = curl/(count_mask); /* mean_jz gets populated as MEANJZD */ | *mean_jz_ptr = curl/(count_mask); /* mean_jz gets populated as MEANJZD */ |
*mean_jz_err_ptr = (sqrt(err))*fabs(((rsun_obs/rsun_ref)*(0.00010)*(1/MUNAUGHT)*(1000.))/(count_mask)); // error in the quantity MEANJZD |
*mean_jz_err_ptr = (sqrt(err)/count_mask)*((1/cdelt1)*(rsun_obs/rsun_ref)*(0.00010)*(1/MUNAUGHT)*(1000.)); // error in the quantity MEANJZD |
| |
*us_i_ptr = (us_i); /* us_i gets populated as TOTUSJZ */ | *us_i_ptr = (us_i); /* us_i gets populated as TOTUSJZ */ |
*us_i_err_ptr = (sqrt(err))*fabs((cdelt1/1)*(rsun_ref/rsun_obs)*(0.00010)*(1/MUNAUGHT)); // error in the quantity TOTUSJZ |
*us_i_err_ptr = (sqrt(err))*((cdelt1/1)*(rsun_ref/rsun_obs)*(0.00010)*(1/MUNAUGHT)); // error in the quantity TOTUSJZ |
| |
printf("MEANJZD=%f\n",*mean_jz_ptr); |
//printf("MEANJZD=%f\n",*mean_jz_ptr); |
printf("MEANJZD_err=%f\n",*mean_jz_err_ptr); |
//printf("MEANJZD_err=%f\n",*mean_jz_err_ptr); |
| |
printf("TOTUSJZ=%g\n",*us_i_ptr); |
//printf("TOTUSJZ=%g\n",*us_i_ptr); |
printf("TOTUSJZ_err=%g\n",*us_i_err_ptr); |
//printf("TOTUSJZ_err=%g\n",*us_i_err_ptr); |
| |
return 0; | return 0; |
| |
Line 665 int computeJzsmooth(float *bx, float *by |
|
Line 700 int computeJzsmooth(float *bx, float *by |
|
/* Example function 10: Twist Parameter, alpha */ | /* Example function 10: Twist Parameter, alpha */ |
| |
// The twist parameter, alpha, is defined as alpha = Jz/Bz. In this case, the calculation | // The twist parameter, alpha, is defined as alpha = Jz/Bz. In this case, the calculation |
// for alpha is calculated in the following way (different from Leka and Barnes' approach): |
// for alpha is weighted by Bz (following Hagino et al., http://adsabs.harvard.edu/abs/2004PASJ...56..831H): |
| |
// (sum of all positive Bz + abs(sum of all negative Bz)) = avg Bz |
// numerator = sum of all Jz*Bz |
// (abs(sum of all Jz at positive Bz) + abs(sum of all Jz at negative Bz)) = avg Jz |
// denominator = sum of Bz*Bz |
// avg alpha = avg Jz / avg Bz |
// alpha = numerator/denominator |
|
|
// The sign is assigned as follows: |
|
// If the sum of all Bz is greater than 0, then evaluate the sum of Jz at the positive Bz pixels. |
|
// If this value is > 0, then alpha is > 0. |
|
// If this value is < 0, then alpha is <0. |
|
// |
|
// If the sum of all Bz is less than 0, then evaluate the sum of Jz at the negative Bz pixels. |
|
// If this value is > 0, then alpha is < 0. |
|
// If this value is < 0, then alpha is > 0. |
|
| |
// The units of alpha are in 1/Mm | // The units of alpha are in 1/Mm |
// The units of Jz are in Gauss/pix; the units of Bz are in Gauss. | // The units of Jz are in Gauss/pix; the units of Bz are in Gauss. |
Line 694 int computeAlpha(float *jz_err, float *b |
|
Line 720 int computeAlpha(float *jz_err, float *b |
|
int ny = dims[1]; | int ny = dims[1]; |
int i=0; | int i=0; |
int j=0; | int j=0; |
int count_mask=0; |
double alpha_total = 0.0; |
float a=0.0; |
double C = ((1/cdelt1)*(rsun_obs/rsun_ref)*(1000000.)); |
float b=0.0; |
double total = 0.0; |
float c=0.0; |
double A = 0.0; |
float d=0.0; |
double B = 0.0; |
float bznew=0.0; |
|
float alpha2=0.0; |
|
float sum1=0.0; |
|
float sum2=0.0; |
|
float sum3=0.0; |
|
float sum4=0.0; |
|
float sum=0.0; |
|
float sum5=0.0; |
|
float sum6=0.0; |
|
float sum_err=0.0; |
|
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
|
|
for (i = 1; i < nx-1; i++) | for (i = 1; i < nx-1; i++) |
{ | { |
for (j = 1; j < ny-1; j++) | for (j = 1; j < ny-1; j++) |
Line 720 int computeAlpha(float *jz_err, float *b |
|
Line 735 int computeAlpha(float *jz_err, float *b |
|
if isnan(jz[j * nx + i]) continue; | if isnan(jz[j * nx + i]) continue; |
if isnan(bz[j * nx + i]) continue; | if isnan(bz[j * nx + i]) continue; |
if (jz[j * nx + i] == 0.0) continue; | if (jz[j * nx + i] == 0.0) continue; |
if (bz_err[j * nx + i] == 0.0) continue; |
|
if (bz[j * nx + i] == 0.0) continue; | if (bz[j * nx + i] == 0.0) continue; |
if (bz[j * nx + i] > 0) sum1 += ( bz[j * nx + i] ); a++; |
A += jz[j*nx+i]*bz[j*nx+i]; |
if (bz[j * nx + i] <= 0) sum2 += ( bz[j * nx + i] ); b++; |
B += bz[j*nx+i]*bz[j*nx+i]; |
if (bz[j * nx + i] > 0) sum3 += ( jz[j * nx + i] ); c++; |
|
if (bz[j * nx + i] <= 0) sum4 += ( jz[j * nx + i] ); d++; |
|
sum5 += bz[j * nx + i]; |
|
/* sum_err is a fractional uncertainty */ |
|
sum_err += sqrt(((jz_err[j * nx + i]*jz_err[j * nx + i])/(jz[j * nx + i]*jz[j * nx + i])) + ((bz_err[j * nx + i]*bz_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i]))) * fabs( ( (jz[j * nx + i]) / (bz[j * nx + i]) ) *(1/cdelt1)*(rsun_obs/rsun_ref)*(1000000.)); |
|
count_mask++; |
|
} | } |
} | } |
| |
sum = (((fabs(sum3))+(fabs(sum4)))/((fabs(sum2))+sum1))*((1/cdelt1)*(rsun_obs/rsun_ref)*(1000000.)); /* the units for (jz/bz) are 1/Mm */ |
for (i = 1; i < nx-1; i++) |
|
{ |
/* Determine the sign of alpha */ |
for (j = 1; j < ny-1; j++) |
if ((sum5 > 0) && (sum3 > 0)) sum=sum; |
{ |
if ((sum5 > 0) && (sum3 <= 0)) sum=-sum; |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
if ((sum5 < 0) && (sum4 <= 0)) sum=sum; |
if isnan(jz[j * nx + i]) continue; |
if ((sum5 < 0) && (sum4 > 0)) sum=-sum; |
if isnan(bz[j * nx + i]) continue; |
|
if (jz[j * nx + i] == 0.0) continue; |
*mean_alpha_ptr = sum; /* Units are 1/Mm */ |
if (bz[j * nx + i] == 0.0) continue; |
*mean_alpha_err_ptr = (sqrt(sum_err*sum_err)) / ((a+b+c+d)*100.0); // error in the quantity (sum)/(count_mask); factor of 100 comes from converting percent |
total += bz[j*nx+i]*bz[j*nx+i]*jz_err[j*nx+i]*jz_err[j*nx+i] + (jz[j*nx+i]-2*bz[j*nx+i]*A/B)*(jz[j*nx+i]-2*bz[j*nx+i]*A/B)*bz_err[j*nx+i]*bz_err[j*nx+i]; |
|
} |
|
} |
| |
printf("MEANALP=%f\n",*mean_alpha_ptr); |
/* Determine the absolute value of alpha. The units for alpha are 1/Mm */ |
printf("MEANALP_err=%f\n",*mean_alpha_err_ptr); |
alpha_total = ((A/B)*C); |
|
*mean_alpha_ptr = alpha_total; |
|
*mean_alpha_err_ptr = (C/B)*(sqrt(total)); |
| |
return 0; | return 0; |
} | } |
Line 772 int computeHelicity(float *jz_err, float |
|
Line 782 int computeHelicity(float *jz_err, float |
|
int i=0; | int i=0; |
int j=0; | int j=0; |
int count_mask=0; | int count_mask=0; |
float sum=0.0; |
double sum = 0.0; |
float sum2=0.0; |
double sum2 = 0.0; |
float sum_err=0.0; |
double err = 0.0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
| |
Line 785 int computeHelicity(float *jz_err, float |
|
Line 795 int computeHelicity(float *jz_err, float |
|
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
if isnan(jz[j * nx + i]) continue; | if isnan(jz[j * nx + i]) continue; |
if isnan(bz[j * nx + i]) continue; | if isnan(bz[j * nx + i]) continue; |
|
if isnan(jz_err[j * nx + i]) continue; |
|
if isnan(bz_err[j * nx + i]) continue; |
if (bz[j * nx + i] == 0.0) continue; | if (bz[j * nx + i] == 0.0) continue; |
if (jz[j * nx + i] == 0.0) continue; | if (jz[j * nx + i] == 0.0) continue; |
sum += (jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); // contributes to MEANJZH and ABSNJZH | sum += (jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); // contributes to MEANJZH and ABSNJZH |
sum2 += fabs(jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); // contributes to TOTUSJH | sum2 += fabs(jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); // contributes to TOTUSJH |
sum_err += sqrt(((jz_err[j * nx + i]*jz_err[j * nx + i])/(jz[j * nx + i]*jz[j * nx + i])) + ((bz_err[j * nx + i]*bz_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i]))) * fabs(jz[j * nx + i]*bz[j * nx + i]*(1/cdelt1)*(rsun_obs/rsun_ref)); |
err += (jz_err[j * nx + i]*jz_err[j * nx + i]*bz[j * nx + i]*bz[j * nx + i]) + (bz_err[j * nx + i]*bz_err[j * nx + i]*jz[j * nx + i]*jz[j * nx + i]); |
count_mask++; | count_mask++; |
} | } |
} | } |
Line 798 int computeHelicity(float *jz_err, float |
|
Line 810 int computeHelicity(float *jz_err, float |
|
*total_us_ih_ptr = sum2 ; /* Units are G^2 / m ; keyword is TOTUSJH */ | *total_us_ih_ptr = sum2 ; /* Units are G^2 / m ; keyword is TOTUSJH */ |
*total_abs_ih_ptr = fabs(sum) ; /* Units are G^2 / m ; keyword is ABSNJZH */ | *total_abs_ih_ptr = fabs(sum) ; /* Units are G^2 / m ; keyword is ABSNJZH */ |
| |
*mean_ih_err_ptr = (sqrt(sum_err*sum_err)) / (count_mask*100.0) ; // error in the quantity MEANJZH |
*mean_ih_err_ptr = (sqrt(err)/count_mask)*(1/cdelt1)*(rsun_obs/rsun_ref) ; // error in the quantity MEANJZH |
*total_us_ih_err_ptr = (sqrt(sum_err*sum_err)) / (100.0) ; // error in the quantity TOTUSJH |
*total_us_ih_err_ptr = (sqrt(err))*(1/cdelt1)*(rsun_obs/rsun_ref) ; // error in the quantity TOTUSJH |
*total_abs_ih_err_ptr = (sqrt(sum_err*sum_err)) / (100.0) ; // error in the quantity ABSNJZH |
*total_abs_ih_err_ptr = (sqrt(err))*(1/cdelt1)*(rsun_obs/rsun_ref) ; // error in the quantity ABSNJZH |
| |
printf("MEANJZH=%f\n",*mean_ih_ptr); |
//printf("MEANJZH=%f\n",*mean_ih_ptr); |
printf("MEANJZH_err=%f\n",*mean_ih_err_ptr); |
//printf("MEANJZH_err=%f\n",*mean_ih_err_ptr); |
| |
printf("TOTUSJH=%f\n",*total_us_ih_ptr); |
//printf("TOTUSJH=%f\n",*total_us_ih_ptr); |
printf("TOTUSJH_err=%f\n",*total_us_ih_err_ptr); |
//printf("TOTUSJH_err=%f\n",*total_us_ih_err_ptr); |
| |
printf("ABSNJZH=%f\n",*total_abs_ih_ptr); |
//printf("ABSNJZH=%f\n",*total_abs_ih_ptr); |
printf("ABSNJZH_err=%f\n",*total_abs_ih_err_ptr); |
//printf("ABSNJZH_err=%f\n",*total_abs_ih_err_ptr); |
| |
return 0; | return 0; |
} | } |
Line 818 int computeHelicity(float *jz_err, float |
|
Line 830 int computeHelicity(float *jz_err, float |
|
/* Example function 12: Sum of Absolute Value per polarity */ | /* Example function 12: Sum of Absolute Value per polarity */ |
| |
// The Sum of the Absolute Value per polarity is defined as the following: | // The Sum of the Absolute Value per polarity is defined as the following: |
// fabs(sum(jz gt 0)) + fabs(sum(jz lt 0)) and the units are in Amperes. |
// fabs(sum(jz gt 0)) + fabs(sum(jz lt 0)) and the units are in Amperes per arcsecond. |
// The units of jz are in G/pix. In this case, we would have the following: | // The units of jz are in G/pix. In this case, we would have the following: |
// Jz = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS)(RSUN_REF/RSUN_OBS)(RSUN_OBS/RSUN_REF), | // Jz = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS)(RSUN_REF/RSUN_OBS)(RSUN_OBS/RSUN_REF), |
// = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS) | // = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS) |
Line 834 int computeSumAbsPerPolarity(float *jz_e |
|
Line 846 int computeSumAbsPerPolarity(float *jz_e |
|
int i=0; | int i=0; |
int j=0; | int j=0; |
int count_mask=0; | int count_mask=0; |
float sum1=0.0; |
double sum1=0.0; |
float sum2=0.0; |
double sum2=0.0; |
float err=0.0; |
double err=0.0; |
*totaljzptr=0.0; | *totaljzptr=0.0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
Line 847 int computeSumAbsPerPolarity(float *jz_e |
|
Line 859 int computeSumAbsPerPolarity(float *jz_e |
|
{ | { |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
if isnan(bz[j * nx + i]) continue; | if isnan(bz[j * nx + i]) continue; |
|
if isnan(jz[j * nx + i]) continue; |
if (bz[j * nx + i] > 0) sum1 += ( jz[j * nx + i])*(1/cdelt1)*(0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs); | if (bz[j * nx + i] > 0) sum1 += ( jz[j * nx + i])*(1/cdelt1)*(0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs); |
if (bz[j * nx + i] <= 0) sum2 += ( jz[j * nx + i])*(1/cdelt1)*(0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs); | if (bz[j * nx + i] <= 0) sum2 += ( jz[j * nx + i])*(1/cdelt1)*(0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs); |
err += (jz_err[j * nx + i]*jz_err[j * nx + i]); | err += (jz_err[j * nx + i]*jz_err[j * nx + i]); |
Line 854 int computeSumAbsPerPolarity(float *jz_e |
|
Line 867 int computeSumAbsPerPolarity(float *jz_e |
|
} | } |
} | } |
| |
*totaljzptr = fabs(sum1) + fabs(sum2); /* Units are A */ |
*totaljzptr = fabs(sum1) + fabs(sum2); /* Units are Amperes per arcsecond */ |
*totaljz_err_ptr = sqrt(err)*(1/cdelt1)*fabs((0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs)); | *totaljz_err_ptr = sqrt(err)*(1/cdelt1)*fabs((0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs)); |
printf("SAVNCPP=%g\n",*totaljzptr); |
//printf("SAVNCPP=%g\n",*totaljzptr); |
printf("SAVNCPP_err=%g\n",*totaljz_err_ptr); |
//printf("SAVNCPP_err=%g\n",*totaljz_err_ptr); |
| |
return 0; | return 0; |
} | } |
Line 885 int computeFreeEnergy(float *bx_err, flo |
|
Line 898 int computeFreeEnergy(float *bx_err, flo |
|
int i=0; | int i=0; |
int j=0; | int j=0; |
int count_mask=0; | int count_mask=0; |
float sum=0.0; |
double sum = 0.0; |
float sum1=0.0; |
double sum1 = 0.0; |
float err=0.0; |
double err = 0.0; |
*totpotptr=0.0; | *totpotptr=0.0; |
*meanpotptr=0.0; | *meanpotptr=0.0; |
| |
Line 900 int computeFreeEnergy(float *bx_err, flo |
|
Line 913 int computeFreeEnergy(float *bx_err, flo |
|
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
if isnan(bx[j * nx + i]) continue; | if isnan(bx[j * nx + i]) continue; |
if isnan(by[j * nx + i]) continue; | if isnan(by[j * nx + i]) continue; |
sum += ( ((bpx[j * nx + i] - bx[j * nx + i])*(bpx[j * nx + i] - bx[j * nx + i])) + ((bpy[j * nx + i] - by[j * nx + i])*(bpy[j * nx + i] - by[j * nx + i])) )*(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0); |
sum += ( ((bx[j * nx + i] - bpx[j * nx + i])*(bx[j * nx + i] - bpx[j * nx + i])) + ((by[j * nx + i] - bpy[j * nx + i])*(by[j * nx + i] - bpy[j * nx + i])) )*(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0); |
sum1 += ( ((bpx[j * nx + i] - bx[j * nx + i])*(bpx[j * nx + i] - bx[j * nx + i])) + ((bpy[j * nx + i] - by[j * nx + i])*(bpy[j * nx + i] - by[j * nx + i])) ); |
sum1 += ( ((bx[j * nx + i] - bpx[j * nx + i])*(bx[j * nx + i] - bpx[j * nx + i])) + ((by[j * nx + i] - bpy[j * nx + i])*(by[j * nx + i] - bpy[j * nx + i])) ); |
err += (4.0*bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i]) + (4.0*by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i]); |
err += 4.0*(bx[j * nx + i] - bpx[j * nx + i])*(bx[j * nx + i] - bpx[j * nx + i])*(bx_err[j * nx + i]*bx_err[j * nx + i]) + |
|
4.0*(by[j * nx + i] - bpy[j * nx + i])*(by[j * nx + i] - bpy[j * nx + i])*(by_err[j * nx + i]*by_err[j * nx + i]); |
count_mask++; | count_mask++; |
} | } |
} | } |
| |
*meanpotptr = (sum1/(8.*PI)) / (count_mask); /* Units are ergs per cubic centimeter */ |
/* Units of meanpotptr are ergs per centimeter */ |
*meanpot_err_ptr = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0) / (count_mask*8.*PI); // error in the quantity (sum)/(count_mask) |
*meanpotptr = (sum1) / (count_mask*8.*PI) ; /* Units are ergs per cubic centimeter */ |
|
*meanpot_err_ptr = (sqrt(err)) / (count_mask*8.*PI); // error in the quantity (sum)/(count_mask) |
| |
/* Units of sum are ergs/cm^3, units of factor are cm^2/pix^2; therefore, units of totpotptr are ergs per centimeter */ | /* Units of sum are ergs/cm^3, units of factor are cm^2/pix^2; therefore, units of totpotptr are ergs per centimeter */ |
*totpotptr = (sum)/(8.*PI); | *totpotptr = (sum)/(8.*PI); |
*totpot_err_ptr = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0*(1/(8.*PI))); | *totpot_err_ptr = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0*(1/(8.*PI))); |
| |
printf("MEANPOT=%g\n",*meanpotptr); |
//printf("MEANPOT=%g\n",*meanpotptr); |
printf("MEANPOT_err=%g\n",*meanpot_err_ptr); |
//printf("MEANPOT_err=%g\n",*meanpot_err_ptr); |
| |
printf("TOTPOT=%g\n",*totpotptr); |
//printf("TOTPOT=%g\n",*totpotptr); |
printf("TOTPOT_err=%g\n",*totpot_err_ptr); |
//printf("TOTPOT_err=%g\n",*totpot_err_ptr); |
| |
return 0; | return 0; |
} | } |
Line 926 int computeFreeEnergy(float *bx_err, flo |
|
Line 941 int computeFreeEnergy(float *bx_err, flo |
|
/*===========================================*/ | /*===========================================*/ |
/* Example function 14: Mean 3D shear angle, area with shear greater than 45, mean horizontal shear angle, area with horizontal shear angle greater than 45 */ | /* Example function 14: Mean 3D shear angle, area with shear greater than 45, mean horizontal shear angle, area with horizontal shear angle greater than 45 */ |
| |
int computeShearAngle(float *bx_err, float *by_err, float *bh_err, float *bx, float *by, float *bz, float *bpx, float *bpy, float *bpz, int *dims, |
int computeShearAngle(float *bx_err, float *by_err, float *bz_err, float *bx, float *by, float *bz, float *bpx, float *bpy, float *bpz, int *dims, |
float *meanshear_angleptr, float *meanshear_angle_err_ptr, float *area_w_shear_gt_45ptr, int *mask, int *bitmask) | float *meanshear_angleptr, float *meanshear_angle_err_ptr, float *area_w_shear_gt_45ptr, int *mask, int *bitmask) |
|
|
|
|
{ | { |
int nx = dims[0]; | int nx = dims[0]; |
int ny = dims[1]; | int ny = dims[1]; |
int i=0; | int i=0; |
int j=0; | int j=0; |
int count_mask=0; |
float count_mask = 0; |
float dotproduct = 0.0; |
float count = 0; |
float magnitude_potential = 0.0; |
double dotproduct = 0.0; |
float magnitude_vector=0.0; |
double magnitude_potential = 0.0; |
float shear_angle=0.0; |
double magnitude_vector = 0.0; |
float err=0.0; |
double shear_angle = 0.0; |
float sum = 0.0; |
double denominator = 0.0; |
float count=0.0; |
double term1 = 0.0; |
|
double term2 = 0.0; |
|
double term3 = 0.0; |
|
double sumsum = 0.0; |
|
double err = 0.0; |
|
double part1 = 0.0; |
|
double part2 = 0.0; |
|
double part3 = 0.0; |
*area_w_shear_gt_45ptr=0.0; | *area_w_shear_gt_45ptr=0.0; |
*meanshear_angleptr=0.0; | *meanshear_angleptr=0.0; |
| |
Line 957 int computeShearAngle(float *bx_err, flo |
|
Line 981 int computeShearAngle(float *bx_err, flo |
|
if isnan(bz[j * nx + i]) continue; | if isnan(bz[j * nx + i]) continue; |
if isnan(bx[j * nx + i]) continue; | if isnan(bx[j * nx + i]) continue; |
if isnan(by[j * nx + i]) continue; | if isnan(by[j * nx + i]) continue; |
/* For mean 3D shear angle, area with shear greater than 45*/ |
if isnan(bx_err[j * nx + i]) continue; |
|
if isnan(by_err[j * nx + i]) continue; |
|
if isnan(bz_err[j * nx + i]) continue; |
|
|
|
/* For mean 3D shear angle, percentage with shear greater than 45*/ |
dotproduct = (bpx[j * nx + i])*(bx[j * nx + i]) + (bpy[j * nx + i])*(by[j * nx + i]) + (bpz[j * nx + i])*(bz[j * nx + i]); | dotproduct = (bpx[j * nx + i])*(bx[j * nx + i]) + (bpy[j * nx + i])*(by[j * nx + i]) + (bpz[j * nx + i])*(bz[j * nx + i]); |
magnitude_potential = sqrt( (bpx[j * nx + i]*bpx[j * nx + i]) + (bpy[j * nx + i]*bpy[j * nx + i]) + (bpz[j * nx + i]*bpz[j * nx + i])); | magnitude_potential = sqrt( (bpx[j * nx + i]*bpx[j * nx + i]) + (bpy[j * nx + i]*bpy[j * nx + i]) + (bpz[j * nx + i]*bpz[j * nx + i])); |
magnitude_vector = sqrt( (bx[j * nx + i]*bx[j * nx + i]) + (by[j * nx + i]*by[j * nx + i]) + (bz[j * nx + i]*bz[j * nx + i]) ); | magnitude_vector = sqrt( (bx[j * nx + i]*bx[j * nx + i]) + (by[j * nx + i]*by[j * nx + i]) + (bz[j * nx + i]*bz[j * nx + i]) ); |
|
//printf("dotproduct=%f\n",dotproduct); |
|
//printf("magnitude_potential=%f\n",magnitude_potential); |
|
//printf("magnitude_vector=%f\n",magnitude_vector); |
|
|
shear_angle = acos(dotproduct/(magnitude_potential*magnitude_vector))*(180./PI); | shear_angle = acos(dotproduct/(magnitude_potential*magnitude_vector))*(180./PI); |
|
sumsum += shear_angle; |
|
//printf("shear_angle=%f\n",shear_angle); |
count ++; | count ++; |
sum += shear_angle ; |
|
err += -(1./(1.- sqrt(bx_err[j * nx + i]*bx_err[j * nx + i]+by_err[j * nx + i]*by_err[j * nx + i]+bh_err[j * nx + i]*bh_err[j * nx + i]))); |
|
if (shear_angle > 45) count_mask ++; | if (shear_angle > 45) count_mask ++; |
|
|
|
// For the error analysis |
|
|
|
term1 = bx[j * nx + i]*by[j * nx + i]*bpy[j * nx + i] - by[j * nx + i]*by[j * nx + i]*bpx[j * nx + i] + bz[j * nx + i]*bx[j * nx + i]*bpz[j * nx + i] - bz[j * nx + i]*bz[j * nx + i]*bpx[j * nx + i]; |
|
term2 = bx[j * nx + i]*bx[j * nx + i]*bpy[j * nx + i] - bx[j * nx + i]*by[j * nx + i]*bpx[j * nx + i] + bx[j * nx + i]*bz[j * nx + i]*bpy[j * nx + i] - bz[j * nx + i]*by[j * nx + i]*bpz[j * nx + i]; |
|
term3 = bx[j * nx + i]*bx[j * nx + i]*bpz[j * nx + i] - bx[j * nx + i]*bz[j * nx + i]*bpx[j * nx + i] + by[j * nx + i]*by[j * nx + i]*bpz[j * nx + i] - by[j * nx + i]*bz[j * nx + i]*bpy[j * nx + i]; |
|
|
|
part1 = bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]; |
|
part2 = bpx[j * nx + i]*bpx[j * nx + i] + bpy[j * nx + i]*bpy[j * nx + i] + bpz[j * nx + i]*bpz[j * nx + i]; |
|
part3 = bx[j * nx + i]*bpx[j * nx + i] + by[j * nx + i]*bpy[j * nx + i] + bz[j * nx + i]*bpz[j * nx + i]; |
|
|
|
// denominator is squared |
|
denominator = part1*part1*part1*part2*(1.0-((part3*part3)/(part1*part2))); |
|
|
|
err = (term1*term1*bx_err[j * nx + i]*bx_err[j * nx + i])/(denominator) + |
|
(term1*term1*bx_err[j * nx + i]*bx_err[j * nx + i])/(denominator) + |
|
(term1*term1*bx_err[j * nx + i]*bx_err[j * nx + i])/(denominator) ; |
|
|
} | } |
} | } |
|
|
/* For mean 3D shear angle, area with shear greater than 45*/ | /* For mean 3D shear angle, area with shear greater than 45*/ |
*meanshear_angleptr = (sum)/(count); /* Units are degrees */ |
*meanshear_angleptr = (sumsum)/(count); /* Units are degrees */ |
*meanshear_angle_err_ptr = (sqrt(err*err))/(count); // error in the quantity (sum)/(count_mask) |
*meanshear_angle_err_ptr = (sqrt(err)/count_mask)*(180./PI); |
*area_w_shear_gt_45ptr = (count_mask/(count))*(100.0);/* The area here is a fractional area -- the % of the total area */ |
|
|
/* The area here is a fractional area -- the % of the total area. This has no error associated with it. */ |
|
*area_w_shear_gt_45ptr = (count_mask/(count))*(100.0); |
| |
printf("MEANSHR=%f\n",*meanshear_angleptr); |
//printf("MEANSHR=%f\n",*meanshear_angleptr); |
printf("MEANSHR_err=%f\n",*meanshear_angle_err_ptr); |
//printf("MEANSHR_err=%f\n",*meanshear_angle_err_ptr); |
|
//printf("SHRGT45=%f\n",*area_w_shear_gt_45ptr); |
| |
return 0; | return 0; |
} | } |
| |
|
/*===========================================*/ |
|
/* Example function 15: R parameter as defined in Schrijver, 2007 */ |
|
// |
|
// Note that there is a restriction on the function fsample() |
|
// If the following occurs: |
|
// nx_out > floor((ny_in-1)/scale + 1) |
|
// ny_out > floor((ny_in-1)/scale + 1), |
|
// where n*_out are the dimensions of the output array and n*_in |
|
// are the dimensions of the input array, fsample() will usually result |
|
// in a segfault (though not always, depending on how the segfault was accessed.) |
|
|
|
int computeR(float *bz_err, float *los, int *dims, float *Rparam, float cdelt1, |
|
float *rim, float *p1p0, float *p1n0, float *p1p, float *p1n, float *p1, |
|
float *pmap, int nx1, int ny1, |
|
int scale, float *p1pad, int nxp, int nyp, float *pmapn) |
|
|
|
{ |
|
int nx = dims[0]; |
|
int ny = dims[1]; |
|
int i = 0; |
|
int j = 0; |
|
int index, index1; |
|
double sum = 0.0; |
|
double err = 0.0; |
|
*Rparam = 0.0; |
|
struct fresize_struct fresboxcar, fresgauss; |
|
struct fint_struct fints; |
|
float sigma = 10.0/2.3548; |
|
|
|
// set up convolution kernels |
|
init_fresize_boxcar(&fresboxcar,1,1); |
|
init_fresize_gaussian(&fresgauss,sigma,20,1); |
|
|
|
// =============== [STEP 1] =============== |
|
// bin the line-of-sight magnetogram down by a factor of scale |
|
fsample(los, rim, nx, ny, nx, nx1, ny1, nx1, scale, 0, 0, 0.0); |
|
|
|
// =============== [STEP 2] =============== |
|
// identify positive and negative pixels greater than +/- 150 gauss |
|
// and label those pixels with a 1.0 in arrays p1p0 and p1n0 |
|
for (i = 0; i < nx1; i++) |
|
{ |
|
for (j = 0; j < ny1; j++) |
|
{ |
|
index = j * nx1 + i; |
|
if (rim[index] > 150) |
|
p1p0[index]=1.0; |
|
else |
|
p1p0[index]=0.0; |
|
if (rim[index] < -150) |
|
p1n0[index]=1.0; |
|
else |
|
p1n0[index]=0.0; |
|
} |
|
} |
|
|
|
// =============== [STEP 3] =============== |
|
// smooth each of the negative and positive pixel bitmaps |
|
fresize(&fresboxcar, p1p0, p1p, nx1, ny1, nx1, nx1, ny1, nx1, 0, 0, 0.0); |
|
fresize(&fresboxcar, p1n0, p1n, nx1, ny1, nx1, nx1, ny1, nx1, 0, 0, 0.0); |
|
|
|
// =============== [STEP 4] =============== |
|
// find the pixels for which p1p and p1n are both equal to 1. |
|
// this defines the polarity inversion line |
|
for (i = 0; i < nx1; i++) |
|
{ |
|
for (j = 0; j < ny1; j++) |
|
{ |
|
index = j * nx1 + i; |
|
if ((p1p[index] > 0.0) && (p1n[index] > 0.0)) |
|
p1[index]=1.0; |
|
else |
|
p1[index]=0.0; |
|
} |
|
} |
|
|
|
// pad p1 with zeroes so that the gaussian colvolution in step 5 |
|
// does not cut off data within hwidth of the edge |
|
|
|
// step i: zero p1pad |
|
for (i = 0; i < nxp; i++) |
|
{ |
|
for (j = 0; j < nyp; j++) |
|
{ |
|
index = j * nxp + i; |
|
p1pad[index]=0.0; |
|
} |
|
} |
|
|
|
// step ii: place p1 at the center of p1pad |
|
for (i = 0; i < nx1; i++) |
|
{ |
|
for (j = 0; j < ny1; j++) |
|
{ |
|
index = j * nx1 + i; |
|
index1 = (j+20) * nxp + (i+20); |
|
p1pad[index1]=p1[index]; |
|
} |
|
} |
|
|
|
// =============== [STEP 5] =============== |
|
// convolve the polarity inversion line map with a gaussian |
|
// to identify the region near the plarity inversion line |
|
// the resultant array is called pmap |
|
fresize(&fresgauss, p1pad, pmap, nxp, nyp, nxp, nxp, nyp, nxp, 0, 0, 0.0); |
|
|
|
|
|
// select out the nx1 x ny1 non-padded array within pmap |
|
for (i = 0; i < nx1; i++) |
|
{ |
|
for (j = 0; j < ny1; j++) |
|
{ |
|
index = j * nx1 + i; |
|
index1 = (j+20) * nxp + (i+20); |
|
pmapn[index]=pmap[index1]; |
|
} |
|
} |
|
|
|
// =============== [STEP 6] =============== |
|
// the R parameter is calculated |
|
for (i = 0; i < nx1; i++) |
|
{ |
|
for (j = 0; j < ny1; j++) |
|
{ |
|
index = j * nx1 + i; |
|
if isnan(pmapn[index]) continue; |
|
if isnan(rim[index]) continue; |
|
sum += pmapn[index]*abs(rim[index]); |
|
} |
|
} |
|
|
|
if (sum < 1.0) |
|
*Rparam = 0.0; |
|
else |
|
*Rparam = log10(sum); |
|
|
|
//printf("R_VALUE=%f\n",*Rparam); |
|
|
|
free_fresize(&fresboxcar); |
|
free_fresize(&fresgauss); |
|
|
|
return 0; |
|
|
|
} |
|
|
|
/*===========================================*/ |
|
/* Example function 16: Lorentz force as defined in Fisher, 2012 */ |
|
// |
|
// This calculation is adapted from Xudong's code |
|
// at /proj/cgem/lorentz/apps/lorentz.c |
|
|
|
int computeLorentz(float *bx, float *by, float *bz, float *fx, float *fy, float *fz, int *dims, |
|
float *totfx_ptr, float *totfy_ptr, float *totfz_ptr, float *totbsq_ptr, |
|
float *epsx_ptr, float *epsy_ptr, float *epsz_ptr, int *mask, int *bitmask, |
|
float cdelt1, double rsun_ref, double rsun_obs) |
|
|
|
{ |
|
|
|
int nx = dims[0]; |
|
int ny = dims[1]; |
|
int nxny = nx*ny; |
|
int j = 0; |
|
int index; |
|
double totfx = 0, totfy = 0, totfz = 0; |
|
double bsq = 0, totbsq = 0; |
|
double epsx = 0, epsy = 0, epsz = 0; |
|
double area = cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0; |
|
double k_h = -1.0 * area / (4. * PI) / 1.0e20; |
|
double k_z = area / (8. * PI) / 1.0e20; |
|
|
|
if (nx <= 0 || ny <= 0) return 1; |
|
|
|
for (int i = 0; i < nxny; i++) |
|
{ |
|
if ( mask[i] < 70 || bitmask[i] < 30 ) continue; |
|
if isnan(bx[i]) continue; |
|
if isnan(by[i]) continue; |
|
if isnan(bz[i]) continue; |
|
fx[i] = bx[i] * bz[i] * k_h; |
|
fy[i] = by[i] * bz[i] * k_h; |
|
fz[i] = (bx[i] * bx[i] + by[i] * by[i] - bz[i] * bz[i]) * k_z; |
|
bsq = bx[i] * bx[i] + by[i] * by[i] + bz[i] * bz[i]; |
|
totfx += fx[i]; totfy += fy[i]; totfz += fz[i]; |
|
totbsq += bsq; |
|
} |
|
|
|
*totfx_ptr = totfx; |
|
*totfy_ptr = totfy; |
|
*totfz_ptr = totfz; |
|
*totbsq_ptr = totbsq; |
|
*epsx_ptr = (totfx / k_h) / totbsq; |
|
*epsy_ptr = (totfy / k_h) / totbsq; |
|
*epsz_ptr = (totfz / k_z) / totbsq; |
|
|
|
//printf("TOTBSQ=%f\n",*totbsq_ptr); |
|
|
|
return 0; |
|
|
|
} |
| |
/*==================KEIJI'S CODE =========================*/ | /*==================KEIJI'S CODE =========================*/ |
| |
Line 1099 void greenpot(float *bx, float *by, floa |
|
Line 1351 void greenpot(float *bx, float *by, floa |
|
| |
char *sw_functions_version() // Returns CVS version of sw_functions.c | char *sw_functions_version() // Returns CVS version of sw_functions.c |
{ | { |
return strdup("$Id$"); |
return strdup("$Id"); |
} | } |
| |
/* ---------------- end of this file ----------------*/ | /* ---------------- end of this file ----------------*/ |