version 1.24, 2014/02/18 23:18:07
|
version 1.35, 2015/03/02 21:41:31
|
|
|
MEANPOT Mean photospheric excess magnetic energy density in ergs per cubic centimeter | MEANPOT Mean photospheric excess magnetic energy density in ergs per cubic centimeter |
TOTPOT Total photospheric magnetic energy density in ergs per cubic centimeter | TOTPOT Total photospheric magnetic energy density in ergs per cubic centimeter |
MEANSHR Mean shear angle (measured using Btotal) in degrees | MEANSHR Mean shear angle (measured using Btotal) in degrees |
|
R_VALUE Karel Schrijver's R parameter |
| |
The indices are calculated on the pixels in which the conf_disambig segment is greater than 70 and | The indices are calculated on the pixels in which the conf_disambig segment is greater than 70 and |
pixels in which the bitmap segment is greater than 30. These ranges are selected because the CCD | pixels in which the bitmap segment is greater than 30. These ranges are selected because the CCD |
Line 245 int computeB_total(float *bx_err, float |
|
Line 246 int computeB_total(float *bx_err, float |
|
/*===========================================*/ | /*===========================================*/ |
/* Example function 5: Derivative of B_Total SQRT( (dBt/dx)^2 + (dBt/dy)^2 ) */ | /* Example function 5: Derivative of B_Total SQRT( (dBt/dx)^2 + (dBt/dy)^2 ) */ |
| |
int computeBtotalderivative(float *bt, int *dims, float *mean_derivative_btotal_ptr, int *mask, int *bitmask, float *derx_bt, float *dery_bt, float *bt_err, float *mean_derivative_btotal_err_ptr) |
int computeBtotalderivative(float *bt, int *dims, float *mean_derivative_btotal_ptr, int *mask, int *bitmask, float *derx_bt, float *dery_bt, float *bt_err, float *mean_derivative_btotal_err_ptr, float *err_termAt, float *err_termBt) |
{ | { |
| |
int nx = dims[0]; | int nx = dims[0]; |
Line 265 int computeBtotalderivative(float *bt, i |
|
Line 266 int computeBtotalderivative(float *bt, i |
|
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
derx_bt[j * nx + i] = (bt[j * nx + i+1] - bt[j * nx + i-1])*0.5; | derx_bt[j * nx + i] = (bt[j * nx + i+1] - bt[j * nx + i-1])*0.5; |
|
err_termAt[j * nx + i] = (((bt[j * nx + (i+1)]-bt[j * nx + (i-1)])*(bt[j * nx + (i+1)]-bt[j * nx + (i-1)])) * (bt_err[j * nx + (i+1)]*bt_err[j * nx + (i+1)] + bt_err[j * nx + (i-1)]*bt_err[j * nx + (i-1)])) ; |
} | } |
} | } |
| |
Line 274 int computeBtotalderivative(float *bt, i |
|
Line 276 int computeBtotalderivative(float *bt, i |
|
for (j = 1; j <= ny-2; j++) | for (j = 1; j <= ny-2; j++) |
{ | { |
dery_bt[j * nx + i] = (bt[(j+1) * nx + i] - bt[(j-1) * nx + i])*0.5; | dery_bt[j * nx + i] = (bt[(j+1) * nx + i] - bt[(j-1) * nx + i])*0.5; |
|
err_termBt[j * nx + i] = (((bt[(j+1) * nx + i]-bt[(j-1) * nx + i])*(bt[(j+1) * nx + i]-bt[(j-1) * nx + i])) * (bt_err[(j+1) * nx + i]*bt_err[(j+1) * nx + i] + bt_err[(j-1) * nx + i]*bt_err[(j-1) * nx + i])) ; |
} | } |
} | } |
| |
|
/* consider the edges for the arrays that contribute to the variable "sum" in the computation below. |
/* consider the edges */ |
ignore the edges for the error terms as those arrays have been initialized to zero. |
|
this is okay because the error term will ultimately not include the edge pixels as they are selected out by the mask and bitmask arrays.*/ |
i=0; | i=0; |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
Line 303 int computeBtotalderivative(float *bt, i |
|
Line 307 int computeBtotalderivative(float *bt, i |
|
dery_bt[j * nx + i] = ( (3*bt[j * nx + i]) + (-4*bt[(j-1) * nx + i]) - (-bt[(j-2) * nx + i]) )*0.5; | dery_bt[j * nx + i] = ( (3*bt[j * nx + i]) + (-4*bt[(j-1) * nx + i]) - (-bt[(j-2) * nx + i]) )*0.5; |
} | } |
| |
|
// Calculate the sum only |
for (i = 1; i <= nx-2; i++) | for (i = 1; i <= nx-2; i++) |
{ | { |
for (j = 1; j <= ny-2; j++) | for (j = 1; j <= ny-2; j++) |
Line 319 int computeBtotalderivative(float *bt, i |
|
Line 323 int computeBtotalderivative(float *bt, i |
|
if isnan(derx_bt[j * nx + i]) continue; | if isnan(derx_bt[j * nx + i]) continue; |
if isnan(dery_bt[j * nx + i]) continue; | if isnan(dery_bt[j * nx + i]) continue; |
sum += sqrt( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] ); /* Units of Gauss */ | sum += sqrt( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] ); /* Units of Gauss */ |
err += (((bt[(j+1) * nx + i]-bt[(j-1) * nx + i])*(bt[(j+1) * nx + i]-bt[(j-1) * nx + i])) * (bt_err[(j+1) * nx + i]*bt_err[(j+1) * nx + i] + bt_err[(j-1) * nx + i]*bt_err[(j-1) * nx + i])) / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] ))+ |
err += err_termBt[j * nx + i] / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] ))+ |
(((bt[j * nx + (i+1)]-bt[j * nx + (i-1)])*(bt[j * nx + (i+1)]-bt[j * nx + (i-1)])) * (bt_err[j * nx + (i+1)]*bt_err[j * nx + (i+1)] + bt_err[j * nx + (i-1)]*bt_err[j * nx + (i-1)])) / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] )) ; |
err_termAt[j * nx + i] / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] )) ; |
count_mask++; | count_mask++; |
} | } |
} | } |
Line 337 int computeBtotalderivative(float *bt, i |
|
Line 341 int computeBtotalderivative(float *bt, i |
|
/*===========================================*/ | /*===========================================*/ |
/* Example function 6: Derivative of Bh SQRT( (dBh/dx)^2 + (dBh/dy)^2 ) */ | /* Example function 6: Derivative of Bh SQRT( (dBh/dx)^2 + (dBh/dy)^2 ) */ |
| |
int computeBhderivative(float *bh, float *bh_err, int *dims, float *mean_derivative_bh_ptr, float *mean_derivative_bh_err_ptr, int *mask, int *bitmask, float *derx_bh, float *dery_bh) |
int computeBhderivative(float *bh, float *bh_err, int *dims, float *mean_derivative_bh_ptr, float *mean_derivative_bh_err_ptr, int *mask, int *bitmask, float *derx_bh, float *dery_bh, float *err_termAh, float *err_termBh) |
{ | { |
| |
int nx = dims[0]; | int nx = dims[0]; |
Line 357 int computeBhderivative(float *bh, float |
|
Line 361 int computeBhderivative(float *bh, float |
|
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
derx_bh[j * nx + i] = (bh[j * nx + i+1] - bh[j * nx + i-1])*0.5; | derx_bh[j * nx + i] = (bh[j * nx + i+1] - bh[j * nx + i-1])*0.5; |
|
err_termAh[j * nx + i] = (((bh[j * nx + (i+1)]-bh[j * nx + (i-1)])*(bh[j * nx + (i+1)]-bh[j * nx + (i-1)])) * (bh_err[j * nx + (i+1)]*bh_err[j * nx + (i+1)] + bh_err[j * nx + (i-1)]*bh_err[j * nx + (i-1)])); |
} | } |
} | } |
| |
Line 366 int computeBhderivative(float *bh, float |
|
Line 371 int computeBhderivative(float *bh, float |
|
for (j = 1; j <= ny-2; j++) | for (j = 1; j <= ny-2; j++) |
{ | { |
dery_bh[j * nx + i] = (bh[(j+1) * nx + i] - bh[(j-1) * nx + i])*0.5; | dery_bh[j * nx + i] = (bh[(j+1) * nx + i] - bh[(j-1) * nx + i])*0.5; |
|
err_termBh[j * nx + i] = (((bh[ (j+1) * nx + i]-bh[(j-1) * nx + i])*(bh[(j+1) * nx + i]-bh[(j-1) * nx + i])) * (bh_err[(j+1) * nx + i]*bh_err[(j+1) * nx + i] + bh_err[(j-1) * nx + i]*bh_err[(j-1) * nx + i])); |
} | } |
} | } |
| |
|
/* consider the edges for the arrays that contribute to the variable "sum" in the computation below. |
/* consider the edges */ |
ignore the edges for the error terms as those arrays have been initialized to zero. |
|
this is okay because the error term will ultimately not include the edge pixels as they are selected out by the mask and bitmask arrays.*/ |
i=0; | i=0; |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
Line 411 int computeBhderivative(float *bh, float |
|
Line 418 int computeBhderivative(float *bh, float |
|
if isnan(derx_bh[j * nx + i]) continue; | if isnan(derx_bh[j * nx + i]) continue; |
if isnan(dery_bh[j * nx + i]) continue; | if isnan(dery_bh[j * nx + i]) continue; |
sum += sqrt( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] ); /* Units of Gauss */ | sum += sqrt( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] ); /* Units of Gauss */ |
err += (((bh[(j+1) * nx + i]-bh[(j-1) * nx + i])*(bh[(j+1) * nx + i]-bh[(j-1) * nx + i])) * (bh_err[(j+1) * nx + i]*bh_err[(j+1) * nx + i] + bh_err[(j-1) * nx + i]*bh_err[(j-1) * nx + i])) / (16.0*( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] ))+ |
err += err_termBh[j * nx + i] / (16.0*( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] ))+ |
(((bh[j * nx + (i+1)]-bh[j * nx + (i-1)])*(bh[j * nx + (i+1)]-bh[j * nx + (i-1)])) * (bh_err[j * nx + (i+1)]*bh_err[j * nx + (i+1)] + bh_err[j * nx + (i-1)]*bh_err[j * nx + (i-1)])) / (16.0*( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] )) ; |
err_termAh[j * nx + i] / (16.0*( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] )) ; |
count_mask++; | count_mask++; |
} | } |
} | } |
Line 428 int computeBhderivative(float *bh, float |
|
Line 435 int computeBhderivative(float *bh, float |
|
/*===========================================*/ | /*===========================================*/ |
/* Example function 7: Derivative of B_vertical SQRT( (dBz/dx)^2 + (dBz/dy)^2 ) */ | /* Example function 7: Derivative of B_vertical SQRT( (dBz/dx)^2 + (dBz/dy)^2 ) */ |
| |
int computeBzderivative(float *bz, float *bz_err, int *dims, float *mean_derivative_bz_ptr, float *mean_derivative_bz_err_ptr, int *mask, int *bitmask, float *derx_bz, float *dery_bz) |
int computeBzderivative(float *bz, float *bz_err, int *dims, float *mean_derivative_bz_ptr, float *mean_derivative_bz_err_ptr, int *mask, int *bitmask, float *derx_bz, float *dery_bz, float *err_termA, float *err_termB) |
{ | { |
| |
int nx = dims[0]; | int nx = dims[0]; |
Line 447 int computeBzderivative(float *bz, float |
|
Line 454 int computeBzderivative(float *bz, float |
|
{ | { |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
if isnan(bz[j * nx + i]) continue; |
|
derx_bz[j * nx + i] = (bz[j * nx + i+1] - bz[j * nx + i-1])*0.5; | derx_bz[j * nx + i] = (bz[j * nx + i+1] - bz[j * nx + i-1])*0.5; |
|
err_termA[j * nx + i] = (((bz[j * nx + (i+1)]-bz[j * nx + (i-1)])*(bz[j * nx + (i+1)]-bz[j * nx + (i-1)])) * (bz_err[j * nx + (i+1)]*bz_err[j * nx + (i+1)] + bz_err[j * nx + (i-1)]*bz_err[j * nx + (i-1)])); |
} | } |
} | } |
| |
Line 457 int computeBzderivative(float *bz, float |
|
Line 464 int computeBzderivative(float *bz, float |
|
{ | { |
for (j = 1; j <= ny-2; j++) | for (j = 1; j <= ny-2; j++) |
{ | { |
if isnan(bz[j * nx + i]) continue; |
|
dery_bz[j * nx + i] = (bz[(j+1) * nx + i] - bz[(j-1) * nx + i])*0.5; | dery_bz[j * nx + i] = (bz[(j+1) * nx + i] - bz[(j-1) * nx + i])*0.5; |
|
err_termB[j * nx + i] = (((bz[(j+1) * nx + i]-bz[(j-1) * nx + i])*(bz[(j+1) * nx + i]-bz[(j-1) * nx + i])) * (bz_err[(j+1) * nx + i]*bz_err[(j+1) * nx + i] + bz_err[(j-1) * nx + i]*bz_err[(j-1) * nx + i])); |
} | } |
} | } |
| |
|
/* consider the edges for the arrays that contribute to the variable "sum" in the computation below. |
/* consider the edges */ |
ignore the edges for the error terms as those arrays have been initialized to zero. |
|
this is okay because the error term will ultimately not include the edge pixels as they are selected out by the mask and bitmask arrays.*/ |
i=0; | i=0; |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
if isnan(bz[j * nx + i]) continue; |
|
derx_bz[j * nx + i] = ( (-3*bz[j * nx + i]) + (4*bz[j * nx + (i+1)]) - (bz[j * nx + (i+2)]) )*0.5; | derx_bz[j * nx + i] = ( (-3*bz[j * nx + i]) + (4*bz[j * nx + (i+1)]) - (bz[j * nx + (i+2)]) )*0.5; |
} | } |
| |
i=nx-1; | i=nx-1; |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
if isnan(bz[j * nx + i]) continue; |
|
derx_bz[j * nx + i] = ( (3*bz[j * nx + i]) + (-4*bz[j * nx + (i-1)]) - (-bz[j * nx + (i-2)]) )*0.5; | derx_bz[j * nx + i] = ( (3*bz[j * nx + i]) + (-4*bz[j * nx + (i-1)]) - (-bz[j * nx + (i-2)]) )*0.5; |
} | } |
| |
j=0; | j=0; |
for (i = 0; i <= nx-1; i++) | for (i = 0; i <= nx-1; i++) |
{ | { |
if isnan(bz[j * nx + i]) continue; |
|
dery_bz[j * nx + i] = ( (-3*bz[j*nx + i]) + (4*bz[(j+1) * nx + i]) - (bz[(j+2) * nx + i]) )*0.5; | dery_bz[j * nx + i] = ( (-3*bz[j*nx + i]) + (4*bz[(j+1) * nx + i]) - (bz[(j+2) * nx + i]) )*0.5; |
} | } |
| |
j=ny-1; | j=ny-1; |
for (i = 0; i <= nx-1; i++) | for (i = 0; i <= nx-1; i++) |
{ | { |
if isnan(bz[j * nx + i]) continue; |
|
dery_bz[j * nx + i] = ( (3*bz[j * nx + i]) + (-4*bz[(j-1) * nx + i]) - (-bz[(j-2) * nx + i]) )*0.5; | dery_bz[j * nx + i] = ( (3*bz[j * nx + i]) + (-4*bz[(j-1) * nx + i]) - (-bz[(j-2) * nx + i]) )*0.5; |
} | } |
| |
Line 508 int computeBzderivative(float *bz, float |
|
Line 512 int computeBzderivative(float *bz, float |
|
if isnan(derx_bz[j * nx + i]) continue; | if isnan(derx_bz[j * nx + i]) continue; |
if isnan(dery_bz[j * nx + i]) continue; | if isnan(dery_bz[j * nx + i]) continue; |
sum += sqrt( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] ); /* Units of Gauss */ | sum += sqrt( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] ); /* Units of Gauss */ |
err += (((bz[(j+1) * nx + i]-bz[(j-1) * nx + i])*(bz[(j+1) * nx + i]-bz[(j-1) * nx + i])) * (bz_err[(j+1) * nx + i]*bz_err[(j+1) * nx + i] + bz_err[(j-1) * nx + i]*bz_err[(j-1) * nx + i])) / |
err += err_termB[j * nx + i] / (16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] )) + |
(16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] )) + |
err_termA[j * nx + i] / (16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] )) ; |
(((bz[j * nx + (i+1)]-bz[j * nx + (i-1)])*(bz[j * nx + (i+1)]-bz[j * nx + (i-1)])) * (bz_err[j * nx + (i+1)]*bz_err[j * nx + (i+1)] + bz_err[j * nx + (i-1)]*bz_err[j * nx + (i-1)])) / |
|
(16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] )) ; |
|
count_mask++; | count_mask++; |
} | } |
} | } |
Line 562 int computeBzderivative(float *bz, float |
|
Line 564 int computeBzderivative(float *bz, float |
|
// float *noiseby, float *noisebz) | // float *noiseby, float *noisebz) |
| |
int computeJz(float *bx_err, float *by_err, float *bx, float *by, int *dims, float *jz, float *jz_err, float *jz_err_squared, | int computeJz(float *bx_err, float *by_err, float *bx, float *by, int *dims, float *jz, float *jz_err, float *jz_err_squared, |
int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery) |
int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery, float *err_term1, float *err_term2) |
| |
| |
{ | { |
Line 581 int computeJz(float *bx_err, float *by_e |
|
Line 583 int computeJz(float *bx_err, float *by_e |
|
{ | { |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
if isnan(by[j * nx + i]) continue; |
|
derx[j * nx + i] = (by[j * nx + i+1] - by[j * nx + i-1])*0.5; | derx[j * nx + i] = (by[j * nx + i+1] - by[j * nx + i-1])*0.5; |
|
err_term1[j * nx + i] = (by_err[j * nx + i+1])*(by_err[j * nx + i+1]) + (by_err[j * nx + i-1])*(by_err[j * nx + i-1]); |
} | } |
} | } |
| |
Line 590 int computeJz(float *bx_err, float *by_e |
|
Line 592 int computeJz(float *bx_err, float *by_e |
|
{ | { |
for (j = 1; j <= ny-2; j++) | for (j = 1; j <= ny-2; j++) |
{ | { |
if isnan(bx[j * nx + i]) continue; |
|
dery[j * nx + i] = (bx[(j+1) * nx + i] - bx[(j-1) * nx + i])*0.5; | dery[j * nx + i] = (bx[(j+1) * nx + i] - bx[(j-1) * nx + i])*0.5; |
|
err_term2[j * nx + i] = (bx_err[(j+1) * nx + i])*(bx_err[(j+1) * nx + i]) + (bx_err[(j-1) * nx + i])*(bx_err[(j-1) * nx + i]); |
} | } |
} | } |
| |
// consider the edges |
/* consider the edges for the arrays that contribute to the variable "sum" in the computation below. |
|
ignore the edges for the error terms as those arrays have been initialized to zero. |
|
this is okay because the error term will ultimately not include the edge pixels as they are selected out by the mask and bitmask arrays.*/ |
|
|
i=0; | i=0; |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
if isnan(by[j * nx + i]) continue; |
|
derx[j * nx + i] = ( (-3*by[j * nx + i]) + (4*by[j * nx + (i+1)]) - (by[j * nx + (i+2)]) )*0.5; | derx[j * nx + i] = ( (-3*by[j * nx + i]) + (4*by[j * nx + (i+1)]) - (by[j * nx + (i+2)]) )*0.5; |
} | } |
| |
i=nx-1; | i=nx-1; |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
if isnan(by[j * nx + i]) continue; |
|
derx[j * nx + i] = ( (3*by[j * nx + i]) + (-4*by[j * nx + (i-1)]) - (-by[j * nx + (i-2)]) )*0.5; | derx[j * nx + i] = ( (3*by[j * nx + i]) + (-4*by[j * nx + (i-1)]) - (-by[j * nx + (i-2)]) )*0.5; |
} | } |
| |
j=0; | j=0; |
for (i = 0; i <= nx-1; i++) | for (i = 0; i <= nx-1; i++) |
{ | { |
if isnan(bx[j * nx + i]) continue; |
|
dery[j * nx + i] = ( (-3*bx[j*nx + i]) + (4*bx[(j+1) * nx + i]) - (bx[(j+2) * nx + i]) )*0.5; | dery[j * nx + i] = ( (-3*bx[j*nx + i]) + (4*bx[(j+1) * nx + i]) - (bx[(j+2) * nx + i]) )*0.5; |
} | } |
| |
j=ny-1; | j=ny-1; |
for (i = 0; i <= nx-1; i++) | for (i = 0; i <= nx-1; i++) |
{ | { |
if isnan(bx[j * nx + i]) continue; |
|
dery[j * nx + i] = ( (3*bx[j * nx + i]) + (-4*bx[(j-1) * nx + i]) - (-bx[(j-2) * nx + i]) )*0.5; | dery[j * nx + i] = ( (3*bx[j * nx + i]) + (-4*bx[(j-1) * nx + i]) - (-bx[(j-2) * nx + i]) )*0.5; |
} | } |
| |
for (i = 1; i <= nx-2; i++) |
|
|
for (i = 0; i <= nx-1; i++) |
{ | { |
for (j = 1; j <= ny-2; j++) |
for (j = 0; j <= ny-1; j++) |
{ | { |
// calculate jz at all points | // calculate jz at all points |
|
|
jz[j * nx + i] = (derx[j * nx + i]-dery[j * nx + i]); // jz is in units of Gauss/pix | jz[j * nx + i] = (derx[j * nx + i]-dery[j * nx + i]); // jz is in units of Gauss/pix |
jz_err[j * nx + i] = 0.5*sqrt( (bx_err[(j+1) * nx + i]*bx_err[(j+1) * nx + i]) + (bx_err[(j-1) * nx + i]*bx_err[(j-1) * nx + i]) + |
jz_err[j * nx + i] = 0.5*sqrt( err_term1[j * nx + i] + err_term2[j * nx + i] ) ; |
(by_err[j * nx + (i+1)]*by_err[j * nx + (i+1)]) + (by_err[j * nx + (i-1)]*by_err[j * nx + (i-1)]) ) ; |
|
jz_err_squared[j * nx + i]= (jz_err[j * nx + i]*jz_err[j * nx + i]); | jz_err_squared[j * nx + i]= (jz_err[j * nx + i]*jz_err[j * nx + i]); |
count_mask++; | count_mask++; |
|
|
} | } |
} | } |
return 0; | return 0; |
Line 831 int computeHelicity(float *jz_err, float |
|
Line 830 int computeHelicity(float *jz_err, float |
|
/* Example function 12: Sum of Absolute Value per polarity */ | /* Example function 12: Sum of Absolute Value per polarity */ |
| |
// The Sum of the Absolute Value per polarity is defined as the following: | // The Sum of the Absolute Value per polarity is defined as the following: |
// fabs(sum(jz gt 0)) + fabs(sum(jz lt 0)) and the units are in Amperes. |
// fabs(sum(jz gt 0)) + fabs(sum(jz lt 0)) and the units are in Amperes per arcsecond. |
// The units of jz are in G/pix. In this case, we would have the following: | // The units of jz are in G/pix. In this case, we would have the following: |
// Jz = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS)(RSUN_REF/RSUN_OBS)(RSUN_OBS/RSUN_REF), | // Jz = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS)(RSUN_REF/RSUN_OBS)(RSUN_OBS/RSUN_REF), |
// = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS) | // = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS) |
Line 868 int computeSumAbsPerPolarity(float *jz_e |
|
Line 867 int computeSumAbsPerPolarity(float *jz_e |
|
} | } |
} | } |
| |
*totaljzptr = fabs(sum1) + fabs(sum2); /* Units are A */ |
*totaljzptr = fabs(sum1) + fabs(sum2); /* Units are Amperes per arcsecond */ |
*totaljz_err_ptr = sqrt(err)*(1/cdelt1)*fabs((0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs)); | *totaljz_err_ptr = sqrt(err)*(1/cdelt1)*fabs((0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs)); |
//printf("SAVNCPP=%g\n",*totaljzptr); | //printf("SAVNCPP=%g\n",*totaljzptr); |
//printf("SAVNCPP_err=%g\n",*totaljz_err_ptr); | //printf("SAVNCPP_err=%g\n",*totaljz_err_ptr); |
Line 1035 int computeShearAngle(float *bx_err, flo |
|
Line 1034 int computeShearAngle(float *bx_err, flo |
|
} | } |
| |
/*===========================================*/ | /*===========================================*/ |
|
/* Example function 15: R parameter as defined in Schrijver, 2007 */ |
|
// |
|
// Note that there is a restriction on the function fsample() |
|
// If the following occurs: |
|
// nx_out > floor((ny_in-1)/scale + 1) |
|
// ny_out > floor((ny_in-1)/scale + 1), |
|
// where n*_out are the dimensions of the output array and n*_in |
|
// are the dimensions of the input array, fsample() will usually result |
|
// in a segfault (though not always, depending on how the segfault was accessed.) |
|
|
int computeR(float *bz_err, float *los, int *dims, float *Rparam, float cdelt1, | int computeR(float *bz_err, float *los, int *dims, float *Rparam, float cdelt1, |
float *rim, float *p1p0, float *p1n0, float *p1p, float *p1n, float *p1, | float *rim, float *p1p0, float *p1n0, float *p1p, float *p1n, float *p1, |
float *pmap, int nx1, int ny1) |
float *pmap, int nx1, int ny1, |
{ |
int scale, float *p1pad, int nxp, int nyp, float *pmapn) |
| |
|
{ |
int nx = dims[0]; | int nx = dims[0]; |
int ny = dims[1]; | int ny = dims[1]; |
int i = 0; | int i = 0; |
int j = 0; | int j = 0; |
int index; |
int index, index1; |
double sum = 0.0; | double sum = 0.0; |
double err = 0.0; | double err = 0.0; |
*Rparam = 0.0; | *Rparam = 0.0; |
struct fresize_struct fresboxcar, fresgauss; | struct fresize_struct fresboxcar, fresgauss; |
int scale = round(2.0/cdelt1); |
struct fint_struct fints; |
float sigma = 10.0/2.3548; | float sigma = 10.0/2.3548; |
| |
|
// set up convolution kernels |
init_fresize_boxcar(&fresboxcar,1,1); | init_fresize_boxcar(&fresboxcar,1,1); |
|
|
// set up convolution kernel |
|
init_fresize_gaussian(&fresgauss,sigma,20,1); | init_fresize_gaussian(&fresgauss,sigma,20,1); |
| |
// make sure convolution kernel is smaller than or equal to array size |
// =============== [STEP 1] =============== |
if ((nx || ny) < 41.) return -1; |
// bin the line-of-sight magnetogram down by a factor of scale |
|
|
fsample(los, rim, nx, ny, nx, nx1, ny1, nx1, scale, 0, 0, 0.0); | fsample(los, rim, nx, ny, nx, nx1, ny1, nx1, scale, 0, 0, 0.0); |
|
|
|
// =============== [STEP 2] =============== |
|
// identify positive and negative pixels greater than +/- 150 gauss |
|
// and label those pixels with a 1.0 in arrays p1p0 and p1n0 |
for (i = 0; i < nx1; i++) | for (i = 0; i < nx1; i++) |
{ | { |
for (j = 0; j < ny1; j++) | for (j = 0; j < ny1; j++) |
Line 1077 int computeR(float *bz_err, float *los, |
|
Line 1089 int computeR(float *bz_err, float *los, |
|
} | } |
} | } |
| |
|
// =============== [STEP 3] =============== |
|
// smooth each of the negative and positive pixel bitmaps |
fresize(&fresboxcar, p1p0, p1p, nx1, ny1, nx1, nx1, ny1, nx1, 0, 0, 0.0); | fresize(&fresboxcar, p1p0, p1p, nx1, ny1, nx1, nx1, ny1, nx1, 0, 0, 0.0); |
fresize(&fresboxcar, p1n0, p1n, nx1, ny1, nx1, nx1, ny1, nx1, 0, 0, 0.0); | fresize(&fresboxcar, p1n0, p1n, nx1, ny1, nx1, nx1, ny1, nx1, 0, 0, 0.0); |
| |
|
// =============== [STEP 4] =============== |
|
// find the pixels for which p1p and p1n are both equal to 1. |
|
// this defines the polarity inversion line |
for (i = 0; i < nx1; i++) | for (i = 0; i < nx1; i++) |
{ | { |
for (j = 0; j < ny1; j++) | for (j = 0; j < ny1; j++) |
{ | { |
index = j * nx1 + i; | index = j * nx1 + i; |
if (p1p[index] > 0 && p1n[index] > 0) |
if ((p1p[index] > 0.0) && (p1n[index] > 0.0)) |
p1[index]=1.0; | p1[index]=1.0; |
else | else |
p1[index]=0.0; | p1[index]=0.0; |
} | } |
} | } |
| |
fresize(&fresgauss, p1, pmap, nx1, ny1, nx1, nx1, ny1, nx1, 0, 0, 0.0); |
// pad p1 with zeroes so that the gaussian colvolution in step 5 |
|
// does not cut off data within hwidth of the edge |
| |
|
// step i: zero p1pad |
|
for (i = 0; i < nxp; i++) |
|
{ |
|
for (j = 0; j < nyp; j++) |
|
{ |
|
index = j * nxp + i; |
|
p1pad[index]=0.0; |
|
} |
|
} |
|
|
|
// step ii: place p1 at the center of p1pad |
for (i = 0; i < nx1; i++) | for (i = 0; i < nx1; i++) |
{ | { |
for (j = 0; j < ny1; j++) | for (j = 0; j < ny1; j++) |
{ | { |
index = j * nx1 + i; | index = j * nx1 + i; |
sum += pmap[index]*abs(rim[index]); |
index1 = (j+20) * nxp + (i+20); |
|
p1pad[index1]=p1[index]; |
|
} |
|
} |
|
|
|
// =============== [STEP 5] =============== |
|
// convolve the polarity inversion line map with a gaussian |
|
// to identify the region near the plarity inversion line |
|
// the resultant array is called pmap |
|
fresize(&fresgauss, p1pad, pmap, nxp, nyp, nxp, nxp, nyp, nxp, 0, 0, 0.0); |
|
|
|
|
|
// select out the nx1 x ny1 non-padded array within pmap |
|
for (i = 0; i < nx1; i++) |
|
{ |
|
for (j = 0; j < ny1; j++) |
|
{ |
|
index = j * nx1 + i; |
|
index1 = (j+20) * nxp + (i+20); |
|
pmapn[index]=pmap[index1]; |
|
} |
|
} |
|
|
|
// =============== [STEP 6] =============== |
|
// the R parameter is calculated |
|
for (i = 0; i < nx1; i++) |
|
{ |
|
for (j = 0; j < ny1; j++) |
|
{ |
|
index = j * nx1 + i; |
|
if isnan(pmapn[index]) continue; |
|
if isnan(rim[index]) continue; |
|
sum += pmapn[index]*abs(rim[index]); |
} | } |
} | } |
| |
Line 1108 int computeR(float *bz_err, float *los, |
|
Line 1169 int computeR(float *bz_err, float *los, |
|
else | else |
*Rparam = log10(sum); | *Rparam = log10(sum); |
| |
|
//printf("R_VALUE=%f\n",*Rparam); |
|
|
free_fresize(&fresboxcar); | free_fresize(&fresboxcar); |
free_fresize(&fresgauss); | free_fresize(&fresgauss); |
| |
return 0; | return 0; |
|
|
} | } |
| |
|
/*===========================================*/ |
|
/* Example function 16: Lorentz force as defined in Fisher, 2012 */ |
|
// |
|
// This calculation is adapted from Xudong's code |
|
// at /proj/cgem/lorentz/apps/lorentz.c |
|
|
|
int computeLorentz(float *bx, float *by, float *bz, float *fx, float *fy, float *fz, int *dims, |
|
float *totfx_ptr, float *totfy_ptr, float *totfz_ptr, float *totbsq_ptr, |
|
float *epsx_ptr, float *epsy_ptr, float *epsz_ptr, int *mask, int *bitmask, |
|
float cdelt1, double rsun_ref, double rsun_obs) |
|
|
|
{ |
|
|
|
int nx = dims[0]; |
|
int ny = dims[1]; |
|
int nxny = nx*ny; |
|
int j = 0; |
|
int index; |
|
double totfx = 0, totfy = 0, totfz = 0; |
|
double bsq = 0, totbsq = 0; |
|
double epsx = 0, epsy = 0, epsz = 0; |
|
double area = cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0; |
|
double k_h = -1.0 * area / (4. * PI) / 1.0e20; |
|
double k_z = area / (8. * PI) / 1.0e20; |
|
|
|
if (nx <= 0 || ny <= 0) return 1; |
|
|
|
for (int i = 0; i < nxny; i++) |
|
{ |
|
if ( mask[i] < 70 || bitmask[i] < 30 ) continue; |
|
if isnan(bx[i]) continue; |
|
if isnan(by[i]) continue; |
|
if isnan(bz[i]) continue; |
|
fx[i] = bx[i] * bz[i] * k_h; |
|
fy[i] = by[i] * bz[i] * k_h; |
|
fz[i] = (bx[i] * bx[i] + by[i] * by[i] - bz[i] * bz[i]) * k_z; |
|
bsq = bx[i] * bx[i] + by[i] * by[i] + bz[i] * bz[i]; |
|
totfx += fx[i]; totfy += fy[i]; totfz += fz[i]; |
|
totbsq += bsq; |
|
} |
|
|
|
*totfx_ptr = totfx; |
|
*totfy_ptr = totfy; |
|
*totfz_ptr = totfz; |
|
*totbsq_ptr = totbsq; |
|
*epsx_ptr = (totfx / k_h) / totbsq; |
|
*epsy_ptr = (totfy / k_h) / totbsq; |
|
*epsz_ptr = (totfz / k_z) / totbsq; |
|
|
|
//printf("TOTBSQ=%f\n",*totbsq_ptr); |
|
|
|
return 0; |
|
|
|
} |
| |
/*==================KEIJI'S CODE =========================*/ | /*==================KEIJI'S CODE =========================*/ |
| |
Line 1233 void greenpot(float *bx, float *by, floa |
|
Line 1351 void greenpot(float *bx, float *by, floa |
|
| |
char *sw_functions_version() // Returns CVS version of sw_functions.c | char *sw_functions_version() // Returns CVS version of sw_functions.c |
{ | { |
return strdup("$Id$"); |
return strdup("$Id"); |
} | } |
| |
/* ---------------- end of this file ----------------*/ | /* ---------------- end of this file ----------------*/ |