(file) Return to sw_functions.c CVS log (file) (dir) Up to [Development] / JSOC / proj / sharp / apps

Diff for /JSOC/proj/sharp/apps/sw_functions.c between version 1.32 and 1.35

version 1.32, 2014/09/05 21:59:48 version 1.35, 2015/03/02 21:41:31
Line 246  int computeB_total(float *bx_err, float
Line 246  int computeB_total(float *bx_err, float
 /*===========================================*/ /*===========================================*/
 /* Example function 5:  Derivative of B_Total SQRT( (dBt/dx)^2 + (dBt/dy)^2 ) */ /* Example function 5:  Derivative of B_Total SQRT( (dBt/dx)^2 + (dBt/dy)^2 ) */
  
 int computeBtotalderivative(float *bt, int *dims, float *mean_derivative_btotal_ptr, int *mask, int *bitmask, float *derx_bt, float *dery_bt, float *bt_err, float *mean_derivative_btotal_err_ptr)  int computeBtotalderivative(float *bt, int *dims, float *mean_derivative_btotal_ptr, int *mask, int *bitmask, float *derx_bt, float *dery_bt, float *bt_err, float *mean_derivative_btotal_err_ptr, float *err_termAt, float *err_termBt)
 { {
  
     int nx = dims[0];     int nx = dims[0];
Line 266  int computeBtotalderivative(float *bt, i
Line 266  int computeBtotalderivative(float *bt, i
             for (j = 0; j <= ny-1; j++)             for (j = 0; j <= ny-1; j++)
         {         {
             derx_bt[j * nx + i] = (bt[j * nx + i+1] - bt[j * nx + i-1])*0.5;             derx_bt[j * nx + i] = (bt[j * nx + i+1] - bt[j * nx + i-1])*0.5;
              err_termAt[j * nx + i] = (((bt[j * nx + (i+1)]-bt[j * nx + (i-1)])*(bt[j * nx + (i+1)]-bt[j * nx + (i-1)])) * (bt_err[j * nx + (i+1)]*bt_err[j * nx + (i+1)] + bt_err[j * nx + (i-1)]*bt_err[j * nx + (i-1)])) ;
         }         }
     }     }
  
Line 275  int computeBtotalderivative(float *bt, i
Line 276  int computeBtotalderivative(float *bt, i
             for (j = 1; j <= ny-2; j++)             for (j = 1; j <= ny-2; j++)
         {         {
             dery_bt[j * nx + i] = (bt[(j+1) * nx + i] - bt[(j-1) * nx + i])*0.5;             dery_bt[j * nx + i] = (bt[(j+1) * nx + i] - bt[(j-1) * nx + i])*0.5;
              err_termBt[j * nx + i] = (((bt[(j+1) * nx + i]-bt[(j-1) * nx + i])*(bt[(j+1) * nx + i]-bt[(j-1) * nx + i])) * (bt_err[(j+1) * nx + i]*bt_err[(j+1) * nx + i] + bt_err[(j-1) * nx + i]*bt_err[(j-1) * nx + i])) ;
         }         }
     }     }
  
       /* consider the edges for the arrays that contribute to the variable "sum" in the computation below.
     /* consider the edges */      ignore the edges for the error terms as those arrays have been initialized to zero.
       this is okay because the error term will ultimately not include the edge pixels as they are selected out by the mask and bitmask arrays.*/
     i=0;     i=0;
     for (j = 0; j <= ny-1; j++)     for (j = 0; j <= ny-1; j++)
     {     {
Line 304  int computeBtotalderivative(float *bt, i
Line 307  int computeBtotalderivative(float *bt, i
         dery_bt[j * nx + i] = ( (3*bt[j * nx + i]) + (-4*bt[(j-1) * nx + i]) - (-bt[(j-2) * nx + i]) )*0.5;         dery_bt[j * nx + i] = ( (3*bt[j * nx + i]) + (-4*bt[(j-1) * nx + i]) - (-bt[(j-2) * nx + i]) )*0.5;
     }     }
  
       // Calculate the sum only
     for (i = 1; i <= nx-2; i++)     for (i = 1; i <= nx-2; i++)
     {     {
         for (j = 1; j <= ny-2; j++)         for (j = 1; j <= ny-2; j++)
Line 320  int computeBtotalderivative(float *bt, i
Line 323  int computeBtotalderivative(float *bt, i
             if isnan(derx_bt[j * nx + i]) continue;             if isnan(derx_bt[j * nx + i]) continue;
             if isnan(dery_bt[j * nx + i]) continue;             if isnan(dery_bt[j * nx + i]) continue;
             sum += sqrt( derx_bt[j * nx + i]*derx_bt[j * nx + i]  + dery_bt[j * nx + i]*dery_bt[j * nx + i]  ); /* Units of Gauss */             sum += sqrt( derx_bt[j * nx + i]*derx_bt[j * nx + i]  + dery_bt[j * nx + i]*dery_bt[j * nx + i]  ); /* Units of Gauss */
             err += (((bt[(j+1) * nx + i]-bt[(j-1) * nx + i])*(bt[(j+1) * nx + i]-bt[(j-1) * nx + i])) * (bt_err[(j+1) * nx + i]*bt_err[(j+1) * nx + i] + bt_err[(j-1) * nx + i]*bt_err[(j-1) * nx + i])) / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i]  + dery_bt[j * nx + i]*dery_bt[j * nx + i]  ))+              err += err_termBt[j * nx + i] / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i]  + dery_bt[j * nx + i]*dery_bt[j * nx + i]  ))+
             (((bt[j * nx + (i+1)]-bt[j * nx + (i-1)])*(bt[j * nx + (i+1)]-bt[j * nx + (i-1)])) * (bt_err[j * nx + (i+1)]*bt_err[j * nx + (i+1)] + bt_err[j * nx + (i-1)]*bt_err[j * nx + (i-1)])) / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i]  + dery_bt[j * nx + i]*dery_bt[j * nx + i]  )) ;                     err_termAt[j * nx + i] / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i]  + dery_bt[j * nx + i]*dery_bt[j * nx + i]  )) ;
             count_mask++;             count_mask++;
         }         }
     }     }
Line 338  int computeBtotalderivative(float *bt, i
Line 341  int computeBtotalderivative(float *bt, i
 /*===========================================*/ /*===========================================*/
 /* Example function 6:  Derivative of Bh SQRT( (dBh/dx)^2 + (dBh/dy)^2 ) */ /* Example function 6:  Derivative of Bh SQRT( (dBh/dx)^2 + (dBh/dy)^2 ) */
  
 int computeBhderivative(float *bh, float *bh_err, int *dims, float *mean_derivative_bh_ptr, float *mean_derivative_bh_err_ptr, int *mask, int *bitmask, float *derx_bh, float *dery_bh)  int computeBhderivative(float *bh, float *bh_err, int *dims, float *mean_derivative_bh_ptr, float *mean_derivative_bh_err_ptr, int *mask, int *bitmask, float *derx_bh, float *dery_bh, float *err_termAh, float *err_termBh)
 { {
  
     int nx = dims[0];     int nx = dims[0];
Line 358  int computeBhderivative(float *bh, float
Line 361  int computeBhderivative(float *bh, float
             for (j = 0; j <= ny-1; j++)             for (j = 0; j <= ny-1; j++)
         {         {
             derx_bh[j * nx + i] = (bh[j * nx + i+1] - bh[j * nx + i-1])*0.5;             derx_bh[j * nx + i] = (bh[j * nx + i+1] - bh[j * nx + i-1])*0.5;
              err_termAh[j * nx + i] = (((bh[j * nx + (i+1)]-bh[j * nx + (i-1)])*(bh[j * nx + (i+1)]-bh[j * nx + (i-1)])) * (bh_err[j * nx + (i+1)]*bh_err[j * nx + (i+1)] + bh_err[j * nx + (i-1)]*bh_err[j * nx + (i-1)]));
         }         }
     }     }
  
Line 367  int computeBhderivative(float *bh, float
Line 371  int computeBhderivative(float *bh, float
             for (j = 1; j <= ny-2; j++)             for (j = 1; j <= ny-2; j++)
         {         {
             dery_bh[j * nx + i] = (bh[(j+1) * nx + i] - bh[(j-1) * nx + i])*0.5;             dery_bh[j * nx + i] = (bh[(j+1) * nx + i] - bh[(j-1) * nx + i])*0.5;
             err_termBh[j * nx + i] = (((bh[ (j+1) * nx + i]-bh[(j-1) * nx + i])*(bh[(j+1) * nx + i]-bh[(j-1) * nx + i])) * (bh_err[(j+1) * nx + i]*bh_err[(j+1) * nx + i] + bh_err[(j-1) * nx + i]*bh_err[(j-1) * nx + i]));
         }         }
     }     }
  
       /* consider the edges for the arrays that contribute to the variable "sum" in the computation below.
     /* consider the edges */      ignore the edges for the error terms as those arrays have been initialized to zero.
       this is okay because the error term will ultimately not include the edge pixels as they are selected out by the mask and bitmask arrays.*/
     i=0;     i=0;
     for (j = 0; j <= ny-1; j++)     for (j = 0; j <= ny-1; j++)
     {     {
Line 412  int computeBhderivative(float *bh, float
Line 418  int computeBhderivative(float *bh, float
             if isnan(derx_bh[j * nx + i]) continue;             if isnan(derx_bh[j * nx + i]) continue;
             if isnan(dery_bh[j * nx + i]) continue;             if isnan(dery_bh[j * nx + i]) continue;
             sum += sqrt( derx_bh[j * nx + i]*derx_bh[j * nx + i]  + dery_bh[j * nx + i]*dery_bh[j * nx + i]  ); /* Units of Gauss */             sum += sqrt( derx_bh[j * nx + i]*derx_bh[j * nx + i]  + dery_bh[j * nx + i]*dery_bh[j * nx + i]  ); /* Units of Gauss */
             err += (((bh[(j+1) * nx + i]-bh[(j-1) * nx + i])*(bh[(j+1) * nx + i]-bh[(j-1) * nx + i])) * (bh_err[(j+1) * nx + i]*bh_err[(j+1) * nx + i] + bh_err[(j-1) * nx + i]*bh_err[(j-1) * nx + i])) / (16.0*( derx_bh[j * nx + i]*derx_bh[j * nx + i]  + dery_bh[j * nx + i]*dery_bh[j * nx + i]  ))+              err += err_termBh[j * nx + i] / (16.0*( derx_bh[j * nx + i]*derx_bh[j * nx + i]  + dery_bh[j * nx + i]*dery_bh[j * nx + i]  ))+
             (((bh[j * nx + (i+1)]-bh[j * nx + (i-1)])*(bh[j * nx + (i+1)]-bh[j * nx + (i-1)])) * (bh_err[j * nx + (i+1)]*bh_err[j * nx + (i+1)] + bh_err[j * nx + (i-1)]*bh_err[j * nx + (i-1)])) / (16.0*( derx_bh[j * nx + i]*derx_bh[j * nx + i]  + dery_bh[j * nx + i]*dery_bh[j * nx + i]  )) ;                     err_termAh[j * nx + i] / (16.0*( derx_bh[j * nx + i]*derx_bh[j * nx + i]  + dery_bh[j * nx + i]*dery_bh[j * nx + i]  )) ;
             count_mask++;             count_mask++;
         }         }
     }     }
Line 429  int computeBhderivative(float *bh, float
Line 435  int computeBhderivative(float *bh, float
 /*===========================================*/ /*===========================================*/
 /* Example function 7:  Derivative of B_vertical SQRT( (dBz/dx)^2 + (dBz/dy)^2 ) */ /* Example function 7:  Derivative of B_vertical SQRT( (dBz/dx)^2 + (dBz/dy)^2 ) */
  
 int computeBzderivative(float *bz, float *bz_err, int *dims, float *mean_derivative_bz_ptr, float *mean_derivative_bz_err_ptr, int *mask, int *bitmask, float *derx_bz, float *dery_bz)  int computeBzderivative(float *bz, float *bz_err, int *dims, float *mean_derivative_bz_ptr, float *mean_derivative_bz_err_ptr, int *mask, int *bitmask, float *derx_bz, float *dery_bz, float *err_termA, float *err_termB)
 { {
  
     int nx = dims[0];     int nx = dims[0];
Line 448  int computeBzderivative(float *bz, float
Line 454  int computeBzderivative(float *bz, float
     {     {
             for (j = 0; j <= ny-1; j++)             for (j = 0; j <= ny-1; j++)
         {         {
             if isnan(bz[j * nx + i]) continue;  
             derx_bz[j * nx + i] = (bz[j * nx + i+1] - bz[j * nx + i-1])*0.5;             derx_bz[j * nx + i] = (bz[j * nx + i+1] - bz[j * nx + i-1])*0.5;
              err_termA[j * nx + i] = (((bz[j * nx + (i+1)]-bz[j * nx + (i-1)])*(bz[j * nx + (i+1)]-bz[j * nx + (i-1)])) * (bz_err[j * nx + (i+1)]*bz_err[j * nx + (i+1)] + bz_err[j * nx + (i-1)]*bz_err[j * nx + (i-1)]));
         }         }
     }     }
  
Line 458  int computeBzderivative(float *bz, float
Line 464  int computeBzderivative(float *bz, float
     {     {
             for (j = 1; j <= ny-2; j++)             for (j = 1; j <= ny-2; j++)
         {         {
             if isnan(bz[j * nx + i]) continue;  
             dery_bz[j * nx + i] = (bz[(j+1) * nx + i] - bz[(j-1) * nx + i])*0.5;             dery_bz[j * nx + i] = (bz[(j+1) * nx + i] - bz[(j-1) * nx + i])*0.5;
              err_termB[j * nx + i] = (((bz[(j+1) * nx + i]-bz[(j-1) * nx + i])*(bz[(j+1) * nx + i]-bz[(j-1) * nx + i])) * (bz_err[(j+1) * nx + i]*bz_err[(j+1) * nx + i] + bz_err[(j-1) * nx + i]*bz_err[(j-1) * nx + i]));
         }         }
     }     }
  
       /* consider the edges for the arrays that contribute to the variable "sum" in the computation below.
     /* consider the edges */      ignore the edges for the error terms as those arrays have been initialized to zero.
       this is okay because the error term will ultimately not include the edge pixels as they are selected out by the mask and bitmask arrays.*/
     i=0;     i=0;
     for (j = 0; j <= ny-1; j++)     for (j = 0; j <= ny-1; j++)
     {     {
         if isnan(bz[j * nx + i]) continue;  
         derx_bz[j * nx + i] = ( (-3*bz[j * nx + i]) + (4*bz[j * nx + (i+1)]) - (bz[j * nx + (i+2)]) )*0.5;         derx_bz[j * nx + i] = ( (-3*bz[j * nx + i]) + (4*bz[j * nx + (i+1)]) - (bz[j * nx + (i+2)]) )*0.5;
     }     }
  
     i=nx-1;     i=nx-1;
     for (j = 0; j <= ny-1; j++)     for (j = 0; j <= ny-1; j++)
     {     {
         if isnan(bz[j * nx + i]) continue;  
         derx_bz[j * nx + i] = ( (3*bz[j * nx + i]) + (-4*bz[j * nx + (i-1)]) - (-bz[j * nx + (i-2)]) )*0.5;         derx_bz[j * nx + i] = ( (3*bz[j * nx + i]) + (-4*bz[j * nx + (i-1)]) - (-bz[j * nx + (i-2)]) )*0.5;
     }     }
  
     j=0;     j=0;
     for (i = 0; i <= nx-1; i++)     for (i = 0; i <= nx-1; i++)
     {     {
         if isnan(bz[j * nx + i]) continue;  
         dery_bz[j * nx + i] = ( (-3*bz[j*nx + i]) + (4*bz[(j+1) * nx + i]) - (bz[(j+2) * nx + i]) )*0.5;         dery_bz[j * nx + i] = ( (-3*bz[j*nx + i]) + (4*bz[(j+1) * nx + i]) - (bz[(j+2) * nx + i]) )*0.5;
     }     }
  
     j=ny-1;     j=ny-1;
     for (i = 0; i <= nx-1; i++)     for (i = 0; i <= nx-1; i++)
     {     {
         if isnan(bz[j * nx + i]) continue;  
         dery_bz[j * nx + i] = ( (3*bz[j * nx + i]) + (-4*bz[(j-1) * nx + i]) - (-bz[(j-2) * nx + i]) )*0.5;         dery_bz[j * nx + i] = ( (3*bz[j * nx + i]) + (-4*bz[(j-1) * nx + i]) - (-bz[(j-2) * nx + i]) )*0.5;
     }     }
  
Line 509  int computeBzderivative(float *bz, float
Line 512  int computeBzderivative(float *bz, float
             if isnan(derx_bz[j * nx + i]) continue;             if isnan(derx_bz[j * nx + i]) continue;
             if isnan(dery_bz[j * nx + i]) continue;             if isnan(dery_bz[j * nx + i]) continue;
             sum += sqrt( derx_bz[j * nx + i]*derx_bz[j * nx + i]  + dery_bz[j * nx + i]*dery_bz[j * nx + i]  ); /* Units of Gauss */             sum += sqrt( derx_bz[j * nx + i]*derx_bz[j * nx + i]  + dery_bz[j * nx + i]*dery_bz[j * nx + i]  ); /* Units of Gauss */
             err += (((bz[(j+1) * nx + i]-bz[(j-1) * nx + i])*(bz[(j+1) * nx + i]-bz[(j-1) * nx + i])) * (bz_err[(j+1) * nx + i]*bz_err[(j+1) * nx + i] + bz_err[(j-1) * nx + i]*bz_err[(j-1) * nx + i])) /              err += err_termB[j * nx + i] / (16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i]  + dery_bz[j * nx + i]*dery_bz[j * nx + i]  )) +
             (16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i]  + dery_bz[j * nx + i]*dery_bz[j * nx + i]  )) +                     err_termA[j * nx + i] / (16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i]  + dery_bz[j * nx + i]*dery_bz[j * nx + i]  )) ;
             (((bz[j * nx + (i+1)]-bz[j * nx + (i-1)])*(bz[j * nx + (i+1)]-bz[j * nx + (i-1)])) * (bz_err[j * nx + (i+1)]*bz_err[j * nx + (i+1)] + bz_err[j * nx + (i-1)]*bz_err[j * nx + (i-1)])) /  
             (16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i]  + dery_bz[j * nx + i]*dery_bz[j * nx + i]  )) ;  
             count_mask++;             count_mask++;
         }         }
     }     }
Line 563  int computeBzderivative(float *bz, float
Line 564  int computeBzderivative(float *bz, float
 //              float *noiseby, float *noisebz) //              float *noiseby, float *noisebz)
  
 int computeJz(float *bx_err, float *by_err, float *bx, float *by, int *dims, float *jz, float *jz_err, float *jz_err_squared, int computeJz(float *bx_err, float *by_err, float *bx, float *by, int *dims, float *jz, float *jz_err, float *jz_err_squared,
               int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery)                int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery, float *err_term1, float *err_term2)
  
  
 { {
Line 582  int computeJz(float *bx_err, float *by_e
Line 583  int computeJz(float *bx_err, float *by_e
     {     {
             for (j = 0; j <= ny-1; j++)             for (j = 0; j <= ny-1; j++)
         {         {
             if isnan(by[j * nx + i]) continue;  
             derx[j * nx + i] = (by[j * nx + i+1] - by[j * nx + i-1])*0.5;             derx[j * nx + i] = (by[j * nx + i+1] - by[j * nx + i-1])*0.5;
              err_term1[j * nx + i] = (by_err[j * nx + i+1])*(by_err[j * nx + i+1]) + (by_err[j * nx + i-1])*(by_err[j * nx + i-1]);
         }         }
     }     }
  
Line 591  int computeJz(float *bx_err, float *by_e
Line 592  int computeJz(float *bx_err, float *by_e
     {     {
             for (j = 1; j <= ny-2; j++)             for (j = 1; j <= ny-2; j++)
         {         {
             if isnan(bx[j * nx + i]) continue;  
             dery[j * nx + i] = (bx[(j+1) * nx + i] - bx[(j-1) * nx + i])*0.5;             dery[j * nx + i] = (bx[(j+1) * nx + i] - bx[(j-1) * nx + i])*0.5;
              err_term2[j * nx + i] = (bx_err[(j+1) * nx + i])*(bx_err[(j+1) * nx + i]) + (bx_err[(j-1) * nx + i])*(bx_err[(j-1) * nx + i]);
         }         }
     }     }
  
     // consider the edges      /* consider the edges for the arrays that contribute to the variable "sum" in the computation below.
       ignore the edges for the error terms as those arrays have been initialized to zero.
       this is okay because the error term will ultimately not include the edge pixels as they are selected out by the mask and bitmask arrays.*/
   
     i=0;     i=0;
     for (j = 0; j <= ny-1; j++)     for (j = 0; j <= ny-1; j++)
     {     {
         if isnan(by[j * nx + i]) continue;  
         derx[j * nx + i] = ( (-3*by[j * nx + i]) + (4*by[j * nx + (i+1)]) - (by[j * nx + (i+2)]) )*0.5;         derx[j * nx + i] = ( (-3*by[j * nx + i]) + (4*by[j * nx + (i+1)]) - (by[j * nx + (i+2)]) )*0.5;
     }     }
  
     i=nx-1;     i=nx-1;
     for (j = 0; j <= ny-1; j++)     for (j = 0; j <= ny-1; j++)
     {     {
         if isnan(by[j * nx + i]) continue;  
         derx[j * nx + i] = ( (3*by[j * nx + i]) + (-4*by[j * nx + (i-1)]) - (-by[j * nx + (i-2)]) )*0.5;         derx[j * nx + i] = ( (3*by[j * nx + i]) + (-4*by[j * nx + (i-1)]) - (-by[j * nx + (i-2)]) )*0.5;
     }     }
  
     j=0;     j=0;
     for (i = 0; i <= nx-1; i++)     for (i = 0; i <= nx-1; i++)
     {     {
         if isnan(bx[j * nx + i]) continue;  
         dery[j * nx + i] = ( (-3*bx[j*nx + i]) + (4*bx[(j+1) * nx + i]) - (bx[(j+2) * nx + i]) )*0.5;         dery[j * nx + i] = ( (-3*bx[j*nx + i]) + (4*bx[(j+1) * nx + i]) - (bx[(j+2) * nx + i]) )*0.5;
     }     }
  
     j=ny-1;     j=ny-1;
     for (i = 0; i <= nx-1; i++)     for (i = 0; i <= nx-1; i++)
     {     {
         if isnan(bx[j * nx + i]) continue;  
         dery[j * nx + i] = ( (3*bx[j * nx + i]) + (-4*bx[(j-1) * nx + i]) - (-bx[(j-2) * nx + i]) )*0.5;         dery[j * nx + i] = ( (3*bx[j * nx + i]) + (-4*bx[(j-1) * nx + i]) - (-bx[(j-2) * nx + i]) )*0.5;
     }     }
  
     for (i = 1; i <= nx-2; i++)  
       for (i = 0; i <= nx-1; i++)
     {     {
         for (j = 1; j <= ny-2; j++)          for (j = 0; j <= ny-1; j++)
         {         {
             // calculate jz at all points             // calculate jz at all points
   
             jz[j * nx + i]            = (derx[j * nx + i]-dery[j * nx + i]);       // jz is in units of Gauss/pix             jz[j * nx + i]            = (derx[j * nx + i]-dery[j * nx + i]);       // jz is in units of Gauss/pix
             jz_err[j * nx + i]        = 0.5*sqrt( (bx_err[(j+1) * nx + i]*bx_err[(j+1) * nx + i]) + (bx_err[(j-1) * nx + i]*bx_err[(j-1) * nx + i]) +              jz_err[j * nx + i]        = 0.5*sqrt( err_term1[j * nx + i] + err_term2[j * nx + i] ) ;
                                                  (by_err[j * nx + (i+1)]*by_err[j * nx + (i+1)]) + (by_err[j * nx + (i-1)]*by_err[j * nx + (i-1)]) ) ;  
             jz_err_squared[j * nx + i]= (jz_err[j * nx + i]*jz_err[j * nx + i]);             jz_err_squared[j * nx + i]= (jz_err[j * nx + i]*jz_err[j * nx + i]);
             count_mask++;             count_mask++;
   
         }         }
     }     }
         return 0;         return 0;


Legend:
Removed from v.1.32  
changed lines
  Added in v.1.35

Karen Tian
Powered by
ViewCVS 0.9.4