version 1.37, 2015/10/30 20:21:28
|
version 1.38, 2020/06/30 22:38:17
|
Line 1234 int computeLorentz(float *bx, float *by |
|
Line 1234 int computeLorentz(float *bx, float *by |
|
| |
} | } |
| |
|
/*===========================================*/ |
|
|
|
/* Example function 17: Compute total unsigned flux in units of G/cm^2 on the LOS field */ |
|
|
|
// To compute the unsigned flux, we simply calculate |
|
// flux = surface integral [(vector LOS) dot (normal vector)], |
|
// = surface integral [(magnitude LOS)*(magnitude normal)*(cos theta)]. |
|
// However, since the field is radial, we will assume cos theta = 1. |
|
// Therefore the pixels only need to be corrected for the projection. |
|
|
|
// To convert G to G*cm^2, simply multiply by the number of square centimeters per pixel. |
|
// As an order of magnitude estimate, we can assign 0.5 to CDELT1 and 722500m/arcsec to (RSUN_REF/RSUN_OBS). |
|
// (Gauss/pix^2)(CDELT1)^2(RSUN_REF/RSUN_OBS)^2(100.cm/m)^2 |
|
// =Gauss*cm^2 |
|
|
|
int computeAbsFlux_los(float *los, int *dims, float *absFlux, |
|
float *mean_vf_ptr, float *count_mask_ptr, |
|
int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) |
|
|
|
{ |
|
|
|
int nx = dims[0]; |
|
int ny = dims[1]; |
|
int i = 0; |
|
int j = 0; |
|
int count_mask = 0; |
|
double sum = 0.0; |
|
*absFlux = 0.0; |
|
*mean_vf_ptr = 0.0; |
|
|
|
|
|
if (nx <= 0 || ny <= 0) return 1; |
|
|
|
for (i = 0; i < nx; i++) |
|
{ |
|
for (j = 0; j < ny; j++) |
|
{ |
|
if ( bitmask[j * nx + i] < 30 ) continue; |
|
if isnan(los[j * nx + i]) continue; |
|
sum += (fabs(los[j * nx + i])); |
|
count_mask++; |
|
} |
|
} |
|
|
|
*mean_vf_ptr = sum*cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0; |
|
*count_mask_ptr = count_mask; |
|
|
|
return 0; |
|
} |
|
|
|
/*===========================================*/ |
|
/* Example function 18: Derivative of B_LOS (approximately B_vertical) = SQRT( ( dLOS/dx )^2 + ( dLOS/dy )^2 ) */ |
|
|
|
int computeLOSderivative(float *los, int *dims, float *mean_derivative_los_ptr, int *bitmask, float *derx_los, float *dery_los) |
|
{ |
|
|
|
int nx = dims[0]; |
|
int ny = dims[1]; |
|
int i = 0; |
|
int j = 0; |
|
int count_mask = 0; |
|
double sum = 0.0; |
|
*mean_derivative_los_ptr = 0.0; |
|
|
|
if (nx <= 0 || ny <= 0) return 1; |
|
|
|
/* brute force method of calculating the derivative (no consideration for edges) */ |
|
for (i = 1; i <= nx-2; i++) |
|
{ |
|
for (j = 0; j <= ny-1; j++) |
|
{ |
|
derx_los[j * nx + i] = (los[j * nx + i+1] - los[j * nx + i-1])*0.5; |
|
} |
|
} |
|
|
|
/* brute force method of calculating the derivative (no consideration for edges) */ |
|
for (i = 0; i <= nx-1; i++) |
|
{ |
|
for (j = 1; j <= ny-2; j++) |
|
{ |
|
dery_los[j * nx + i] = (los[(j+1) * nx + i] - los[(j-1) * nx + i])*0.5; |
|
} |
|
} |
|
|
|
/* consider the edges for the arrays that contribute to the variable "sum" in the computation below. |
|
ignore the edges for the error terms as those arrays have been initialized to zero. |
|
this is okay because the error term will ultimately not include the edge pixels as they are selected out by the mask and bitmask arrays.*/ |
|
i=0; |
|
for (j = 0; j <= ny-1; j++) |
|
{ |
|
derx_los[j * nx + i] = ( (-3*los[j * nx + i]) + (4*los[j * nx + (i+1)]) - (los[j * nx + (i+2)]) )*0.5; |
|
} |
|
|
|
i=nx-1; |
|
for (j = 0; j <= ny-1; j++) |
|
{ |
|
derx_los[j * nx + i] = ( (3*los[j * nx + i]) + (-4*los[j * nx + (i-1)]) - (-los[j * nx + (i-2)]) )*0.5; |
|
} |
|
|
|
j=0; |
|
for (i = 0; i <= nx-1; i++) |
|
{ |
|
dery_los[j * nx + i] = ( (-3*los[j*nx + i]) + (4*los[(j+1) * nx + i]) - (los[(j+2) * nx + i]) )*0.5; |
|
} |
|
|
|
j=ny-1; |
|
for (i = 0; i <= nx-1; i++) |
|
{ |
|
dery_los[j * nx + i] = ( (3*los[j * nx + i]) + (-4*los[(j-1) * nx + i]) - (-los[(j-2) * nx + i]) )*0.5; |
|
} |
|
|
|
|
|
for (i = 0; i <= nx-1; i++) |
|
{ |
|
for (j = 0; j <= ny-1; j++) |
|
{ |
|
if ( bitmask[j * nx + i] < 30 ) continue; |
|
if ( (derx_los[j * nx + i] + dery_los[j * nx + i]) == 0) continue; |
|
if isnan(los[j * nx + i]) continue; |
|
if isnan(los[(j+1) * nx + i]) continue; |
|
if isnan(los[(j-1) * nx + i]) continue; |
|
if isnan(los[j * nx + i-1]) continue; |
|
if isnan(los[j * nx + i+1]) continue; |
|
if isnan(derx_los[j * nx + i]) continue; |
|
if isnan(dery_los[j * nx + i]) continue; |
|
sum += sqrt( derx_los[j * nx + i]*derx_los[j * nx + i] + dery_los[j * nx + i]*dery_los[j * nx + i] ); /* Units of Gauss */ |
|
count_mask++; |
|
} |
|
} |
|
|
|
*mean_derivative_los_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram |
|
//printf("mean_derivative_los_ptr=%f\n",*mean_derivative_los_ptr); |
|
|
|
return 0; |
|
} |
|
|
/*==================KEIJI'S CODE =========================*/ | /*==================KEIJI'S CODE =========================*/ |
| |
// #include <omp.h> | // #include <omp.h> |