version 1.36, 2015/10/30 18:53:02
|
version 1.40, 2021/05/24 22:17:06
|
|
|
|
|
/*=========================================== | /*=========================================== |
| |
The following 14 functions calculate the following spaceweather indices: |
The following functions calculate these spaceweather indices from the vector magnetic field data: |
| |
USFLUX Total unsigned flux in Maxwells | USFLUX Total unsigned flux in Maxwells |
MEANGAM Mean inclination angle, gamma, in degrees | MEANGAM Mean inclination angle, gamma, in degrees |
|
|
MEANPOT Mean photospheric excess magnetic energy density in ergs per cubic centimeter | MEANPOT Mean photospheric excess magnetic energy density in ergs per cubic centimeter |
TOTPOT Total photospheric magnetic energy density in ergs per cubic centimeter | TOTPOT Total photospheric magnetic energy density in ergs per cubic centimeter |
MEANSHR Mean shear angle (measured using Btotal) in degrees | MEANSHR Mean shear angle (measured using Btotal) in degrees |
|
CMASK The total number of pixels that contributed to the calculation of all the indices listed above |
|
|
|
And these spaceweather indices from the line-of-sight magnetic field data: |
|
USFLUXL Total unsigned flux in Maxwells |
|
MEANGBL Mean value of the line-of-sight field gradient, in Gauss/Mm |
|
CMASKL The total number of pixels that contributed to the calculation of USFLUXL and MEANGBL |
R_VALUE Karel Schrijver's R parameter | R_VALUE Karel Schrijver's R parameter |
| |
The indices are calculated on the pixels in which the conf_disambig segment is greater than 70 and | The indices are calculated on the pixels in which the conf_disambig segment is greater than 70 and |
Line 196 int computeGamma(float *bz_err, float *b |
|
Line 203 int computeGamma(float *bz_err, float *b |
|
*mean_gamma_err_ptr = (sqrt(err)/(count_mask))*(180./PI); | *mean_gamma_err_ptr = (sqrt(err)/(count_mask))*(180./PI); |
//printf("MEANGAM=%f\n",*mean_gamma_ptr); | //printf("MEANGAM=%f\n",*mean_gamma_ptr); |
//printf("MEANGAM_err=%f\n",*mean_gamma_err_ptr); | //printf("MEANGAM_err=%f\n",*mean_gamma_err_ptr); |
printf("sum,count_mask=%f,%d\n",sum,count_mask); |
|
printf("bh[200,200],bh_err[200,200]=%f,%f\n",bh[200,200],bh_err[200,200]); |
|
|
|
return 0; | return 0; |
} | } |
| |
Line 249 int computeB_total(float *bx_err, float |
|
Line 253 int computeB_total(float *bx_err, float |
|
/*===========================================*/ | /*===========================================*/ |
/* Example function 5: Derivative of B_Total SQRT( (dBt/dx)^2 + (dBt/dy)^2 ) */ | /* Example function 5: Derivative of B_Total SQRT( (dBt/dx)^2 + (dBt/dy)^2 ) */ |
| |
int computeBtotalderivative(float *bt, int *dims, float *mean_derivative_btotal_ptr, int *mask, int *bitmask, float *derx_bt, float *dery_bt, float *bt_err, float *mean_derivative_btotal_err_ptr, float *err_term1, float *err_term2) |
int computeBtotalderivative(float *bt, int *dims, float *mean_derivative_btotal_ptr, int *mask, int *bitmask, float *derx_bt, float *dery_bt, float *bt_err, float *mean_derivative_btotal_err_ptr, float *err_termAt, float *err_termBt) |
{ | { |
| |
int nx = dims[0]; | int nx = dims[0]; |
Line 269 int computeBtotalderivative(float *bt, i |
|
Line 273 int computeBtotalderivative(float *bt, i |
|
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
derx_bt[j * nx + i] = (bt[j * nx + i+1] - bt[j * nx + i-1])*0.5; | derx_bt[j * nx + i] = (bt[j * nx + i+1] - bt[j * nx + i-1])*0.5; |
err_term1[j * nx + i] = (((bt[j * nx + (i+1)]-bt[j * nx + (i-1)])*(bt[j * nx + (i+1)]-bt[j * nx + (i-1)])) * (bt_err[j * nx + (i+1)]*bt_err[j * nx + (i+1)] + bt_err[j * nx + (i-1)]*bt_err[j * nx + (i-1)])) ; |
err_termAt[j * nx + i] = (((bt[j * nx + (i+1)]-bt[j * nx + (i-1)])*(bt[j * nx + (i+1)]-bt[j * nx + (i-1)])) * (bt_err[j * nx + (i+1)]*bt_err[j * nx + (i+1)] + bt_err[j * nx + (i-1)]*bt_err[j * nx + (i-1)])) ; |
} | } |
} | } |
| |
Line 279 int computeBtotalderivative(float *bt, i |
|
Line 283 int computeBtotalderivative(float *bt, i |
|
for (j = 1; j <= ny-2; j++) | for (j = 1; j <= ny-2; j++) |
{ | { |
dery_bt[j * nx + i] = (bt[(j+1) * nx + i] - bt[(j-1) * nx + i])*0.5; | dery_bt[j * nx + i] = (bt[(j+1) * nx + i] - bt[(j-1) * nx + i])*0.5; |
err_term2[j * nx + i] = (((bt[(j+1) * nx + i]-bt[(j-1) * nx + i])*(bt[(j+1) * nx + i]-bt[(j-1) * nx + i])) * (bt_err[(j+1) * nx + i]*bt_err[(j+1) * nx + i] + bt_err[(j-1) * nx + i]*bt_err[(j-1) * nx + i])) ; |
err_termBt[j * nx + i] = (((bt[(j+1) * nx + i]-bt[(j-1) * nx + i])*(bt[(j+1) * nx + i]-bt[(j-1) * nx + i])) * (bt_err[(j+1) * nx + i]*bt_err[(j+1) * nx + i] + bt_err[(j-1) * nx + i]*bt_err[(j-1) * nx + i])) ; |
} | } |
} | } |
| |
Line 326 int computeBtotalderivative(float *bt, i |
|
Line 330 int computeBtotalderivative(float *bt, i |
|
if isnan(derx_bt[j * nx + i]) continue; | if isnan(derx_bt[j * nx + i]) continue; |
if isnan(dery_bt[j * nx + i]) continue; | if isnan(dery_bt[j * nx + i]) continue; |
sum += sqrt( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] ); /* Units of Gauss */ | sum += sqrt( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] ); /* Units of Gauss */ |
err += err_term2[j * nx + i] / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] ))+ |
err += err_termBt[j * nx + i] / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] ))+ |
err_term1[j * nx + i] / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] )) ; |
err_termAt[j * nx + i] / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] )) ; |
count_mask++; | count_mask++; |
} | } |
} | } |
Line 344 int computeBtotalderivative(float *bt, i |
|
Line 348 int computeBtotalderivative(float *bt, i |
|
/*===========================================*/ | /*===========================================*/ |
/* Example function 6: Derivative of Bh SQRT( (dBh/dx)^2 + (dBh/dy)^2 ) */ | /* Example function 6: Derivative of Bh SQRT( (dBh/dx)^2 + (dBh/dy)^2 ) */ |
| |
int computeBhderivative(float *bh, float *bh_err, int *dims, float *mean_derivative_bh_ptr, float *mean_derivative_bh_err_ptr, int *mask, int *bitmask, float *derx_bh, float *dery_bh, float *err_term1, float *err_term2) |
int computeBhderivative(float *bh, float *bh_err, int *dims, float *mean_derivative_bh_ptr, float *mean_derivative_bh_err_ptr, int *mask, int *bitmask, float *derx_bh, float *dery_bh, float *err_termAh, float *err_termBh) |
{ | { |
| |
int nx = dims[0]; | int nx = dims[0]; |
Line 364 int computeBhderivative(float *bh, float |
|
Line 368 int computeBhderivative(float *bh, float |
|
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
derx_bh[j * nx + i] = (bh[j * nx + i+1] - bh[j * nx + i-1])*0.5; | derx_bh[j * nx + i] = (bh[j * nx + i+1] - bh[j * nx + i-1])*0.5; |
err_term1[j * nx + i] = (((bh[j * nx + (i+1)]-bh[j * nx + (i-1)])*(bh[j * nx + (i+1)]-bh[j * nx + (i-1)])) * (bh_err[j * nx + (i+1)]*bh_err[j * nx + (i+1)] + bh_err[j * nx + (i-1)]*bh_err[j * nx + (i-1)])); |
err_termAh[j * nx + i] = (((bh[j * nx + (i+1)]-bh[j * nx + (i-1)])*(bh[j * nx + (i+1)]-bh[j * nx + (i-1)])) * (bh_err[j * nx + (i+1)]*bh_err[j * nx + (i+1)] + bh_err[j * nx + (i-1)]*bh_err[j * nx + (i-1)])); |
} | } |
} | } |
| |
Line 374 int computeBhderivative(float *bh, float |
|
Line 378 int computeBhderivative(float *bh, float |
|
for (j = 1; j <= ny-2; j++) | for (j = 1; j <= ny-2; j++) |
{ | { |
dery_bh[j * nx + i] = (bh[(j+1) * nx + i] - bh[(j-1) * nx + i])*0.5; | dery_bh[j * nx + i] = (bh[(j+1) * nx + i] - bh[(j-1) * nx + i])*0.5; |
err_term2[j * nx + i] = (((bh[ (j+1) * nx + i]-bh[(j-1) * nx + i])*(bh[(j+1) * nx + i]-bh[(j-1) * nx + i])) * (bh_err[(j+1) * nx + i]*bh_err[(j+1) * nx + i] + bh_err[(j-1) * nx + i]*bh_err[(j-1) * nx + i])); |
err_termBh[j * nx + i] = (((bh[ (j+1) * nx + i]-bh[(j-1) * nx + i])*(bh[(j+1) * nx + i]-bh[(j-1) * nx + i])) * (bh_err[(j+1) * nx + i]*bh_err[(j+1) * nx + i] + bh_err[(j-1) * nx + i]*bh_err[(j-1) * nx + i])); |
} | } |
} | } |
| |
Line 421 int computeBhderivative(float *bh, float |
|
Line 425 int computeBhderivative(float *bh, float |
|
if isnan(derx_bh[j * nx + i]) continue; | if isnan(derx_bh[j * nx + i]) continue; |
if isnan(dery_bh[j * nx + i]) continue; | if isnan(dery_bh[j * nx + i]) continue; |
sum += sqrt( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] ); /* Units of Gauss */ | sum += sqrt( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] ); /* Units of Gauss */ |
err += err_term2[j * nx + i] / (16.0*( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] ))+ |
err += err_termBh[j * nx + i] / (16.0*( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] ))+ |
err_term1[j * nx + i] / (16.0*( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] )) ; |
err_termAh[j * nx + i] / (16.0*( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] )) ; |
count_mask++; | count_mask++; |
} | } |
} | } |
Line 438 int computeBhderivative(float *bh, float |
|
Line 442 int computeBhderivative(float *bh, float |
|
/*===========================================*/ | /*===========================================*/ |
/* Example function 7: Derivative of B_vertical SQRT( (dBz/dx)^2 + (dBz/dy)^2 ) */ | /* Example function 7: Derivative of B_vertical SQRT( (dBz/dx)^2 + (dBz/dy)^2 ) */ |
| |
int computeBzderivative(float *bz, float *bz_err, int *dims, float *mean_derivative_bz_ptr, float *mean_derivative_bz_err_ptr, int *mask, int *bitmask, float *derx_bz, float *dery_bz, float *err_term1, float *err_term2) |
int computeBzderivative(float *bz, float *bz_err, int *dims, float *mean_derivative_bz_ptr, float *mean_derivative_bz_err_ptr, int *mask, int *bitmask, float *derx_bz, float *dery_bz, float *err_termA, float *err_termB) |
{ | { |
| |
int nx = dims[0]; | int nx = dims[0]; |
Line 458 int computeBzderivative(float *bz, float |
|
Line 462 int computeBzderivative(float *bz, float |
|
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
derx_bz[j * nx + i] = (bz[j * nx + i+1] - bz[j * nx + i-1])*0.5; | derx_bz[j * nx + i] = (bz[j * nx + i+1] - bz[j * nx + i-1])*0.5; |
err_term1[j * nx + i] = (((bz[j * nx + (i+1)]-bz[j * nx + (i-1)])*(bz[j * nx + (i+1)]-bz[j * nx + (i-1)])) * (bz_err[j * nx + (i+1)]*bz_err[j * nx + (i+1)] + bz_err[j * nx + (i-1)]*bz_err[j * nx + (i-1)])); |
err_termA[j * nx + i] = (((bz[j * nx + (i+1)]-bz[j * nx + (i-1)])*(bz[j * nx + (i+1)]-bz[j * nx + (i-1)])) * (bz_err[j * nx + (i+1)]*bz_err[j * nx + (i+1)] + bz_err[j * nx + (i-1)]*bz_err[j * nx + (i-1)])); |
} | } |
} | } |
| |
Line 468 int computeBzderivative(float *bz, float |
|
Line 472 int computeBzderivative(float *bz, float |
|
for (j = 1; j <= ny-2; j++) | for (j = 1; j <= ny-2; j++) |
{ | { |
dery_bz[j * nx + i] = (bz[(j+1) * nx + i] - bz[(j-1) * nx + i])*0.5; | dery_bz[j * nx + i] = (bz[(j+1) * nx + i] - bz[(j-1) * nx + i])*0.5; |
err_term2[j * nx + i] = (((bz[(j+1) * nx + i]-bz[(j-1) * nx + i])*(bz[(j+1) * nx + i]-bz[(j-1) * nx + i])) * (bz_err[(j+1) * nx + i]*bz_err[(j+1) * nx + i] + bz_err[(j-1) * nx + i]*bz_err[(j-1) * nx + i])); |
err_termB[j * nx + i] = (((bz[(j+1) * nx + i]-bz[(j-1) * nx + i])*(bz[(j+1) * nx + i]-bz[(j-1) * nx + i])) * (bz_err[(j+1) * nx + i]*bz_err[(j+1) * nx + i] + bz_err[(j-1) * nx + i]*bz_err[(j-1) * nx + i])); |
} | } |
} | } |
| |
Line 515 int computeBzderivative(float *bz, float |
|
Line 519 int computeBzderivative(float *bz, float |
|
if isnan(derx_bz[j * nx + i]) continue; | if isnan(derx_bz[j * nx + i]) continue; |
if isnan(dery_bz[j * nx + i]) continue; | if isnan(dery_bz[j * nx + i]) continue; |
sum += sqrt( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] ); /* Units of Gauss */ | sum += sqrt( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] ); /* Units of Gauss */ |
err += err_term2[j * nx + i] / (16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] )) + |
err += err_termB[j * nx + i] / (16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] )) + |
err_term1[j * nx + i] / (16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] )) ; |
err_termA[j * nx + i] / (16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] )) ; |
count_mask++; | count_mask++; |
} | } |
} | } |
Line 992 int computeShearAngle(float *bx_err, flo |
|
Line 996 int computeShearAngle(float *bx_err, flo |
|
dotproduct = (bpx[j * nx + i])*(bx[j * nx + i]) + (bpy[j * nx + i])*(by[j * nx + i]) + (bpz[j * nx + i])*(bz[j * nx + i]); | dotproduct = (bpx[j * nx + i])*(bx[j * nx + i]) + (bpy[j * nx + i])*(by[j * nx + i]) + (bpz[j * nx + i])*(bz[j * nx + i]); |
magnitude_potential = sqrt( (bpx[j * nx + i]*bpx[j * nx + i]) + (bpy[j * nx + i]*bpy[j * nx + i]) + (bpz[j * nx + i]*bpz[j * nx + i])); | magnitude_potential = sqrt( (bpx[j * nx + i]*bpx[j * nx + i]) + (bpy[j * nx + i]*bpy[j * nx + i]) + (bpz[j * nx + i]*bpz[j * nx + i])); |
magnitude_vector = sqrt( (bx[j * nx + i]*bx[j * nx + i]) + (by[j * nx + i]*by[j * nx + i]) + (bz[j * nx + i]*bz[j * nx + i]) ); | magnitude_vector = sqrt( (bx[j * nx + i]*bx[j * nx + i]) + (by[j * nx + i]*by[j * nx + i]) + (bz[j * nx + i]*bz[j * nx + i]) ); |
|
|
//printf("i,j=%d,%d\n",i,j); |
|
//printf("dotproduct=%f\n",dotproduct); | //printf("dotproduct=%f\n",dotproduct); |
//printf("magnitude_potential=%f\n",magnitude_potential); | //printf("magnitude_potential=%f\n",magnitude_potential); |
//printf("magnitude_vector=%f\n",magnitude_vector); | //printf("magnitude_vector=%f\n",magnitude_vector); |
//printf("dotproduct/(magnitude_potential*magnitude_vector)=%f\n",dotproduct/(magnitude_potential*magnitude_vector)); |
|
//printf("acos(dotproduct/(magnitude_potential*magnitude_vector))=%f\n",acos(dotproduct/(magnitude_potential*magnitude_vector))); |
|
//printf("acos(dotproduct/(magnitude_potential*magnitude_vector)*(180./PI))=%f\n",acos(dotproduct/(magnitude_potential*magnitude_vector))*(180./PI)); |
|
| |
shear_angle = acos(dotproduct/(magnitude_potential*magnitude_vector))*(180./PI); | shear_angle = acos(dotproduct/(magnitude_potential*magnitude_vector))*(180./PI); |
sumsum += shear_angle; | sumsum += shear_angle; |
Line 1029 int computeShearAngle(float *bx_err, flo |
|
Line 1028 int computeShearAngle(float *bx_err, flo |
|
} | } |
/* For mean 3D shear angle, area with shear greater than 45*/ | /* For mean 3D shear angle, area with shear greater than 45*/ |
*meanshear_angleptr = (sumsum)/(count); /* Units are degrees */ | *meanshear_angleptr = (sumsum)/(count); /* Units are degrees */ |
|
|
|
// For the error in the mean 3D shear angle: |
|
// If count_mask is 0, then we run into a divide by zero error. In this case, set *meanshear_angle_err_ptr to NAN |
|
// If count_mask is greater than zero, then compute the error. |
|
if (count_mask == 0) |
|
*meanshear_angle_err_ptr = NAN; |
|
else |
*meanshear_angle_err_ptr = (sqrt(err)/count_mask)*(180./PI); | *meanshear_angle_err_ptr = (sqrt(err)/count_mask)*(180./PI); |
| |
/* The area here is a fractional area -- the % of the total area. This has no error associated with it. */ | /* The area here is a fractional area -- the % of the total area. This has no error associated with it. */ |
*area_w_shear_gt_45ptr = (count_mask/(count))*(100.0); | *area_w_shear_gt_45ptr = (count_mask/(count))*(100.0); |
| |
//printf("MEANSHR=%f\n",*meanshear_angleptr); | //printf("MEANSHR=%f\n",*meanshear_angleptr); |
//printf("MEANSHR_err=%f\n",*meanshear_angle_err_ptr); |
//printf("ERRMSHA=%f\n",*meanshear_angle_err_ptr); |
//printf("SHRGT45=%f\n",*area_w_shear_gt_45ptr); | //printf("SHRGT45=%f\n",*area_w_shear_gt_45ptr); |
|
|
return 0; | return 0; |
} | } |
| |
Line 1241 int computeLorentz(float *bx, float *by |
|
Line 1246 int computeLorentz(float *bx, float *by |
|
| |
} | } |
| |
|
/*===========================================*/ |
|
|
|
/* Example function 17: Compute total unsigned flux in units of G/cm^2 on the LOS field */ |
|
|
|
// To compute the unsigned flux, we simply calculate |
|
// flux = surface integral [(vector LOS) dot (normal vector)], |
|
// = surface integral [(magnitude LOS)*(magnitude normal)*(cos theta)]. |
|
// However, since the field is radial, we will assume cos theta = 1. |
|
// Therefore the pixels only need to be corrected for the projection. |
|
|
|
// To convert G to G*cm^2, simply multiply by the number of square centimeters per pixel. |
|
// As an order of magnitude estimate, we can assign 0.5 to CDELT1 and 722500m/arcsec to (RSUN_REF/RSUN_OBS). |
|
// (Gauss/pix^2)(CDELT1)^2(RSUN_REF/RSUN_OBS)^2(100.cm/m)^2 |
|
// =Gauss*cm^2 |
|
|
|
int computeAbsFlux_los(float *los, int *dims, float *absFlux_los, |
|
float *mean_vf_los_ptr, float *count_mask_los_ptr, |
|
int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) |
|
|
|
{ |
|
|
|
int nx = dims[0]; |
|
int ny = dims[1]; |
|
int i = 0; |
|
int j = 0; |
|
int count_mask_los = 0; |
|
double sum = 0.0; |
|
*absFlux_los = 0.0; |
|
*mean_vf_los_ptr = 0.0; |
|
|
|
|
|
if (nx <= 0 || ny <= 0) return 1; |
|
|
|
for (i = 0; i < nx; i++) |
|
{ |
|
for (j = 0; j < ny; j++) |
|
{ |
|
if ( bitmask[j * nx + i] < 30 ) continue; |
|
if isnan(los[j * nx + i]) continue; |
|
sum += (fabs(los[j * nx + i])); |
|
count_mask_los++; |
|
} |
|
} |
|
|
|
*mean_vf_los_ptr = sum*cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0; |
|
*count_mask_los_ptr = count_mask_los; |
|
|
|
printf("USFLUXL=%f\n",*mean_vf_los_ptr); |
|
printf("CMASKL=%f\n",*count_mask_los_ptr); |
|
|
|
return 0; |
|
} |
|
|
|
/*===========================================*/ |
|
/* Example function 18: Derivative of B_LOS (approximately B_vertical) = SQRT( ( dLOS/dx )^2 + ( dLOS/dy )^2 ) */ |
|
|
|
int computeLOSderivative(float *los, int *dims, float *mean_derivative_los_ptr, int *bitmask, float *derx_los, float *dery_los) |
|
{ |
|
|
|
int nx = dims[0]; |
|
int ny = dims[1]; |
|
int i = 0; |
|
int j = 0; |
|
int count_mask = 0; |
|
double sum = 0.0; |
|
*mean_derivative_los_ptr = 0.0; |
|
|
|
if (nx <= 0 || ny <= 0) return 1; |
|
|
|
/* brute force method of calculating the derivative (no consideration for edges) */ |
|
for (i = 1; i <= nx-2; i++) |
|
{ |
|
for (j = 0; j <= ny-1; j++) |
|
{ |
|
derx_los[j * nx + i] = (los[j * nx + i+1] - los[j * nx + i-1])*0.5; |
|
} |
|
} |
|
|
|
/* brute force method of calculating the derivative (no consideration for edges) */ |
|
for (i = 0; i <= nx-1; i++) |
|
{ |
|
for (j = 1; j <= ny-2; j++) |
|
{ |
|
dery_los[j * nx + i] = (los[(j+1) * nx + i] - los[(j-1) * nx + i])*0.5; |
|
} |
|
} |
|
|
|
/* consider the edges for the arrays that contribute to the variable "sum" in the computation below. |
|
ignore the edges for the error terms as those arrays have been initialized to zero. |
|
this is okay because the error term will ultimately not include the edge pixels as they are selected out by the mask and bitmask arrays.*/ |
|
i=0; |
|
for (j = 0; j <= ny-1; j++) |
|
{ |
|
derx_los[j * nx + i] = ( (-3*los[j * nx + i]) + (4*los[j * nx + (i+1)]) - (los[j * nx + (i+2)]) )*0.5; |
|
} |
|
|
|
i=nx-1; |
|
for (j = 0; j <= ny-1; j++) |
|
{ |
|
derx_los[j * nx + i] = ( (3*los[j * nx + i]) + (-4*los[j * nx + (i-1)]) - (-los[j * nx + (i-2)]) )*0.5; |
|
} |
|
|
|
j=0; |
|
for (i = 0; i <= nx-1; i++) |
|
{ |
|
dery_los[j * nx + i] = ( (-3*los[j*nx + i]) + (4*los[(j+1) * nx + i]) - (los[(j+2) * nx + i]) )*0.5; |
|
} |
|
|
|
j=ny-1; |
|
for (i = 0; i <= nx-1; i++) |
|
{ |
|
dery_los[j * nx + i] = ( (3*los[j * nx + i]) + (-4*los[(j-1) * nx + i]) - (-los[(j-2) * nx + i]) )*0.5; |
|
} |
|
|
|
|
|
for (i = 0; i <= nx-1; i++) |
|
{ |
|
for (j = 0; j <= ny-1; j++) |
|
{ |
|
if ( bitmask[j * nx + i] < 30 ) continue; |
|
if ( (derx_los[j * nx + i] + dery_los[j * nx + i]) == 0) continue; |
|
if isnan(los[j * nx + i]) continue; |
|
if isnan(los[(j+1) * nx + i]) continue; |
|
if isnan(los[(j-1) * nx + i]) continue; |
|
if isnan(los[j * nx + i-1]) continue; |
|
if isnan(los[j * nx + i+1]) continue; |
|
if isnan(derx_los[j * nx + i]) continue; |
|
if isnan(dery_los[j * nx + i]) continue; |
|
sum += sqrt( derx_los[j * nx + i]*derx_los[j * nx + i] + dery_los[j * nx + i]*dery_los[j * nx + i] ); /* Units of Gauss */ |
|
count_mask++; |
|
} |
|
} |
|
|
|
*mean_derivative_los_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram |
|
|
|
printf("MEANGBL=%f\n",*mean_derivative_los_ptr); |
|
|
|
return 0; |
|
} |
|
|
/*==================KEIJI'S CODE =========================*/ | /*==================KEIJI'S CODE =========================*/ |
| |
// #include <omp.h> | // #include <omp.h> |
Line 1322 void greenpot(float *bx, float *by, floa |
|
Line 1467 void greenpot(float *bx, float *by, floa |
|
i2e = inx + iwindow; | i2e = inx + iwindow; |
if (i2s < 0){i2s = 0;} | if (i2s < 0){i2s = 0;} |
if (i2e > nnx){i2e = nnx;} | if (i2e > nnx){i2e = nnx;} |
// for (j2=j2s;j2<j2e;j2++){for (i2=i2s;i2<i2e;i2++) |
|
for (j2=j2s;j2<2;j2++){for (i2=i2s;i2<2;i2++) |
for (j2=j2s;j2<j2e;j2++){for (i2=i2s;i2<i2e;i2++) |
{ | { |
float val1 = bztmp[nnx*j2 + i2]; | float val1 = bztmp[nnx*j2 + i2]; |
|
float rr, r1, r2; |
|
// r1 = (float)(i2 - inx); |
|
// r2 = (float)(j2 - iny); |
|
// rr = r1*r1 + r2*r2; |
|
// if (rr < rwindow) |
|
// { |
int di, dj; | int di, dj; |
di = abs(i2 - inx); | di = abs(i2 - inx); |
dj = abs(j2 - iny); | dj = abs(j2 - iny); |
sum = sum + val1 * rdist[nnx * dj + di] * dz; | sum = sum + val1 * rdist[nnx * dj + di] * dz; |
printf("sum,val1,rdist[nnx * dj + di]=%f,%f,%f\n",sum,val1,rdist[nnx * dj + di]); |
// } |
} } | } } |
pfpot[nnx*iny + inx] = sum; // Note that this is a simplified definition. | pfpot[nnx*iny + inx] = sum; // Note that this is a simplified definition. |
} | } |
} } // end of OpenMP parallelism | } } // end of OpenMP parallelism |
| |
printf("bztmp[0]=%f\n",bztmp[0]); |
|
printf("bztmp[91746]=%f\n",bztmp[91746]); |
|
printf("pfpot[0]=%f\n",pfpot[0]); |
|
printf("pfpot[91746]=%f\n",pfpot[91746]); |
|
|
|
// #pragma omp parallel for private(inx) | // #pragma omp parallel for private(inx) |
for (iny=1; iny < nny - 1; iny++){for (inx=1; inx < nnx - 1; inx++) | for (iny=1; iny < nny - 1; iny++){for (inx=1; inx < nnx - 1; inx++) |
{ | { |
Line 1348 void greenpot(float *bx, float *by, floa |
|
Line 1494 void greenpot(float *bx, float *by, floa |
|
by[nnx*iny + inx] = -(pfpot[nnx*(iny+1) + inx]-pfpot[nnx*(iny-1) + inx]) * 0.5; | by[nnx*iny + inx] = -(pfpot[nnx*(iny+1) + inx]-pfpot[nnx*(iny-1) + inx]) * 0.5; |
} } // end of OpenMP parallelism | } } // end of OpenMP parallelism |
| |
printf("bx[0]=%f\n",bx[0]); |
|
printf("by[0]=%f\n",by[0]); |
|
printf("bx[91746]=%f\n",bx[91746]); |
|
printf("by[91746]=%f\n",by[91746]); |
|
free(rdist); | free(rdist); |
free(pfpot); | free(pfpot); |
free(bztmp); | free(bztmp); |
Line 1365 char *sw_functions_version() // Returns |
|
Line 1507 char *sw_functions_version() // Returns |
|
return strdup("$Id"); | return strdup("$Id"); |
} | } |
| |
|
|
/* ---------------- end of this file ----------------*/ | /* ---------------- end of this file ----------------*/ |