version 1.8, 2013/02/09 02:39:20
|
version 1.26, 2014/02/19 14:59:25
|
|
|
| |
The indices are calculated on the pixels in which the conf_disambig segment is greater than 70 and | The indices are calculated on the pixels in which the conf_disambig segment is greater than 70 and |
pixels in which the bitmap segment is greater than 30. These ranges are selected because the CCD | pixels in which the bitmap segment is greater than 30. These ranges are selected because the CCD |
coordinate bitmaps are interpolated. |
coordinate bitmaps are interpolated for certain data (at the time of this CVS submit, all data |
|
prior to 2013.08.21_17:24:00_TAI contain interpolated bitmaps; data post-2013.08.21_17:24:00_TAI |
|
contain nearest-neighbor bitmaps). |
| |
In the CCD coordinates, this means that we are selecting the pixels that equal 90 in conf_disambig | In the CCD coordinates, this means that we are selecting the pixels that equal 90 in conf_disambig |
and the pixels that equal 33 or 44 in bitmap. Here are the definitions of the pixel values: |
and the pixels that equal 33 or 34 in bitmap. Here are the definitions of the pixel values: |
| |
For conf_disambig: | For conf_disambig: |
50 : not all solutions agree (weak field method applied) | 50 : not all solutions agree (weak field method applied) |
|
|
| |
Written by Monica Bobra 15 August 2012 | Written by Monica Bobra 15 August 2012 |
Potential Field code (appended) written by Keiji Hayashi | Potential Field code (appended) written by Keiji Hayashi |
|
Error analysis modification 21 October 2013 |
| |
===========================================*/ | ===========================================*/ |
#include <math.h> | #include <math.h> |
|
#include <mkl.h> |
| |
#define PI (M_PI) | #define PI (M_PI) |
#define MUNAUGHT (0.0000012566370614) /* magnetic constant */ | #define MUNAUGHT (0.0000012566370614) /* magnetic constant */ |
|
|
// To convert G to G*cm^2, simply multiply by the number of square centimeters per pixel. | // To convert G to G*cm^2, simply multiply by the number of square centimeters per pixel. |
// As an order of magnitude estimate, we can assign 0.5 to CDELT1 and 722500m/arcsec to (RSUN_REF/RSUN_OBS). | // As an order of magnitude estimate, we can assign 0.5 to CDELT1 and 722500m/arcsec to (RSUN_REF/RSUN_OBS). |
// (Gauss/pix^2)(CDELT1)^2(RSUN_REF/RSUN_OBS)^2(100.cm/m)^2 | // (Gauss/pix^2)(CDELT1)^2(RSUN_REF/RSUN_OBS)^2(100.cm/m)^2 |
// =(Gauss/pix^2)(0.5 arcsec/pix)^2(722500m/arcsec)^2(100cm/m)^2 |
// =Gauss*cm^2 |
// =(1.30501e15)Gauss*cm^2 |
|
| |
// The disambig mask value selects only the pixels with values of 5 or 7 -- that is, |
int computeAbsFlux(float *bz_err, float *bz, int *dims, float *absFlux, |
// 5: pixels for which the radial acute disambiguation solution was chosen |
float *mean_vf_ptr, float *mean_vf_err_ptr, float *count_mask_ptr, int *mask, |
// 7: pixels for which the radial acute and NRWA disambiguation agree |
int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) |
|
|
int computeAbsFlux(float *bz, int *dims, float *absFlux, |
|
float *mean_vf_ptr, int *mask, int *bitmask, |
|
float cdelt1, double rsun_ref, double rsun_obs) |
|
| |
{ | { |
| |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask=0; |
int ny = dims[1]; |
|
int i = 0; |
|
int j = 0; |
|
int count_mask = 0; |
double sum=0.0; | double sum=0.0; |
|
double err = 0.0; |
if (nx <= 0 || ny <= 0) return 1; |
|
|
|
*absFlux = 0.0; | *absFlux = 0.0; |
*mean_vf_ptr =0.0; | *mean_vf_ptr =0.0; |
| |
|
|
|
if (nx <= 0 || ny <= 0) return 1; |
|
|
for (i = 0; i < nx; i++) | for (i = 0; i < nx; i++) |
{ | { |
for (j = 0; j < ny; j++) | for (j = 0; j < ny; j++) |
Line 88 int computeAbsFlux(float *bz, int *dims, |
|
Line 91 int computeAbsFlux(float *bz, int *dims, |
|
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
if isnan(bz[j * nx + i]) continue; | if isnan(bz[j * nx + i]) continue; |
sum += (fabs(bz[j * nx + i])); | sum += (fabs(bz[j * nx + i])); |
|
err += bz_err[j * nx + i]*bz_err[j * nx + i]; |
count_mask++; | count_mask++; |
} | } |
} | } |
| |
printf("nx=%d,ny=%d,count_mask=%d,sum=%f\n",nx,ny,count_mask,sum); |
|
printf("cdelt1=%f,rsun_ref=%f,rsun_obs=%f\n",cdelt1,rsun_ref,rsun_obs); |
|
*mean_vf_ptr = sum*cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0; | *mean_vf_ptr = sum*cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0; |
|
*mean_vf_err_ptr = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0); // error in the unsigned flux |
|
*count_mask_ptr = count_mask; |
return 0; | return 0; |
} | } |
| |
/*===========================================*/ | /*===========================================*/ |
/* Example function 2: Calculate Bh in units of Gauss */ |
/* Example function 2: Calculate Bh, the horizontal field, in units of Gauss */ |
// Native units of Bh are Gauss | // Native units of Bh are Gauss |
| |
int computeBh(float *bx, float *by, float *bz, float *bh, int *dims, |
int computeBh(float *bx_err, float *by_err, float *bh_err, float *bx, float *by, float *bz, float *bh, int *dims, |
float *mean_hf_ptr, int *mask, int *bitmask) | float *mean_hf_ptr, int *mask, int *bitmask) |
| |
{ | { |
| |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask=0; |
int ny = dims[1]; |
float sum=0.0; |
int i = 0; |
|
int j = 0; |
|
int count_mask = 0; |
|
double sum = 0.0; |
*mean_hf_ptr =0.0; | *mean_hf_ptr =0.0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
Line 118 int computeBh(float *bx, float *by, floa |
|
Line 125 int computeBh(float *bx, float *by, floa |
|
{ | { |
for (j = 0; j < ny; j++) | for (j = 0; j < ny; j++) |
{ | { |
if isnan(bx[j * nx + i]) continue; |
if isnan(bx[j * nx + i]) |
if isnan(by[j * nx + i]) continue; |
{ |
|
bh[j * nx + i] = NAN; |
|
bh_err[j * nx + i] = NAN; |
|
continue; |
|
} |
|
if isnan(by[j * nx + i]) |
|
{ |
|
bh[j * nx + i] = NAN; |
|
bh_err[j * nx + i] = NAN; |
|
continue; |
|
} |
bh[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] ); | bh[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] ); |
sum += bh[j * nx + i]; | sum += bh[j * nx + i]; |
|
bh_err[j * nx + i]=sqrt( bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i] + by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i])/ bh[j * nx + i]; |
count_mask++; | count_mask++; |
} | } |
} | } |
| |
*mean_hf_ptr = sum/(count_mask); // would be divided by nx*ny if shape of count_mask = shape of magnetogram | *mean_hf_ptr = sum/(count_mask); // would be divided by nx*ny if shape of count_mask = shape of magnetogram |
printf("*mean_hf_ptr=%f\n",*mean_hf_ptr); |
|
return 0; | return 0; |
} | } |
| |
/*===========================================*/ | /*===========================================*/ |
/* Example function 3: Calculate Gamma in units of degrees */ | /* Example function 3: Calculate Gamma in units of degrees */ |
// Native units of atan(x) are in radians; to convert from radians to degrees, multiply by (180./PI) | // Native units of atan(x) are in radians; to convert from radians to degrees, multiply by (180./PI) |
|
// |
|
// Error analysis calculations are done in radians (since derivatives are only true in units of radians), |
|
// and multiplied by (180./PI) at the end for consistency in units. |
| |
|
int computeGamma(float *bz_err, float *bh_err, float *bx, float *by, float *bz, float *bh, int *dims, |
int computeGamma(float *bx, float *by, float *bz, float *bh, int *dims, |
float *mean_gamma_ptr, float *mean_gamma_err_ptr, int *mask, int *bitmask) |
float *mean_gamma_ptr, int *mask, int *bitmask) |
|
{ | { |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask=0; |
int ny = dims[1]; |
|
int i = 0; |
|
int j = 0; |
|
int count_mask = 0; |
|
double sum = 0.0; |
|
double err = 0.0; |
|
*mean_gamma_ptr = 0.0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
| |
*mean_gamma_ptr=0.0; |
|
float sum=0.0; |
|
int count=0; |
|
|
|
for (i = 0; i < nx; i++) | for (i = 0; i < nx; i++) |
{ | { |
for (j = 0; j < ny; j++) | for (j = 0; j < ny; j++) |
Line 156 int computeGamma(float *bx, float *by, f |
|
Line 178 int computeGamma(float *bx, float *by, f |
|
{ | { |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
if isnan(bz[j * nx + i]) continue; | if isnan(bz[j * nx + i]) continue; |
sum += (atan (fabs( bz[j * nx + i] / bh[j * nx + i] ))* (180./PI)); |
if isnan(bz_err[j * nx + i]) continue; |
|
if isnan(bh_err[j * nx + i]) continue; |
|
if isnan(bh[j * nx + i]) continue; |
|
if (bz[j * nx + i] == 0) continue; |
|
sum += fabs(atan(bh[j * nx + i]/fabs(bz[j * nx + i])))*(180./PI); |
|
err += (1/(1+((bh[j * nx + i]*bh[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i]))))*(1/(1+((bh[j * nx + i]*bh[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i])))) * |
|
( ((bh_err[j * nx + i]*bh_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i])) + |
|
((bh[j * nx + i]*bh[j * nx + i]*bz_err[j * nx + i]*bz_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i]*bz[j * nx + i]*bz[j * nx + i])) ); |
count_mask++; | count_mask++; |
} | } |
} | } |
} | } |
| |
*mean_gamma_ptr = sum/count_mask; | *mean_gamma_ptr = sum/count_mask; |
printf("*mean_gamma_ptr=%f\n",*mean_gamma_ptr); |
*mean_gamma_err_ptr = (sqrt(err)/(count_mask))*(180./PI); |
|
//printf("MEANGAM=%f\n",*mean_gamma_ptr); |
|
//printf("MEANGAM_err=%f\n",*mean_gamma_err_ptr); |
return 0; | return 0; |
} | } |
| |
Line 171 int computeGamma(float *bx, float *by, f |
|
Line 202 int computeGamma(float *bx, float *by, f |
|
/* Example function 4: Calculate B_Total*/ | /* Example function 4: Calculate B_Total*/ |
// Native units of B_Total are in gauss | // Native units of B_Total are in gauss |
| |
int computeB_total(float *bx, float *by, float *bz, float *bt, int *dims, int *mask, int *bitmask) |
int computeB_total(float *bx_err, float *by_err, float *bz_err, float *bt_err, float *bx, float *by, float *bz, float *bt, int *dims, int *mask, int *bitmask) |
{ | { |
| |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask=0; |
int ny = dims[1]; |
|
int i = 0; |
|
int j = 0; |
|
int count_mask = 0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
| |
Line 183 int computeB_total(float *bx, float *by, |
|
Line 217 int computeB_total(float *bx, float *by, |
|
{ | { |
for (j = 0; j < ny; j++) | for (j = 0; j < ny; j++) |
{ | { |
if isnan(bx[j * nx + i]) continue; |
if isnan(bx[j * nx + i]) |
if isnan(by[j * nx + i]) continue; |
{ |
if isnan(bz[j * nx + i]) continue; |
bt[j * nx + i] = NAN; |
|
bt_err[j * nx + i] = NAN; |
|
continue; |
|
} |
|
if isnan(by[j * nx + i]) |
|
{ |
|
bt[j * nx + i] = NAN; |
|
bt_err[j * nx + i] = NAN; |
|
continue; |
|
} |
|
if isnan(bz[j * nx + i]) |
|
{ |
|
bt[j * nx + i] = NAN; |
|
bt_err[j * nx + i] = NAN; |
|
continue; |
|
} |
bt[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]); | bt[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]); |
|
bt_err[j * nx + i]=sqrt(bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i] + by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]*bz_err[j * nx + i]*bz_err[j * nx + i] ) / bt[j * nx + i]; |
} | } |
} | } |
return 0; | return 0; |
Line 195 int computeB_total(float *bx, float *by, |
|
Line 245 int computeB_total(float *bx, float *by, |
|
/*===========================================*/ | /*===========================================*/ |
/* Example function 5: Derivative of B_Total SQRT( (dBt/dx)^2 + (dBt/dy)^2 ) */ | /* Example function 5: Derivative of B_Total SQRT( (dBt/dx)^2 + (dBt/dy)^2 ) */ |
| |
int computeBtotalderivative(float *bt, int *dims, float *mean_derivative_btotal_ptr, int *mask, int *bitmask, float *derx_bt, float *dery_bt) |
int computeBtotalderivative(float *bt, int *dims, float *mean_derivative_btotal_ptr, int *mask, int *bitmask, float *derx_bt, float *dery_bt, float *bt_err, float *mean_derivative_btotal_err_ptr) |
{ | { |
| |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask=0; |
int ny = dims[1]; |
|
int i = 0; |
if (nx <= 0 || ny <= 0) return 1; |
int j = 0; |
|
int count_mask = 0; |
|
double sum = 0.0; |
|
double err = 0.0; |
*mean_derivative_btotal_ptr = 0.0; | *mean_derivative_btotal_ptr = 0.0; |
float sum = 0.0; |
|
| |
|
if (nx <= 0 || ny <= 0) return 1; |
| |
/* brute force method of calculating the derivative (no consideration for edges) */ | /* brute force method of calculating the derivative (no consideration for edges) */ |
for (i = 1; i <= nx-2; i++) | for (i = 1; i <= nx-2; i++) |
Line 252 int computeBtotalderivative(float *bt, i |
|
Line 304 int computeBtotalderivative(float *bt, i |
|
} | } |
| |
| |
for (i = 0; i <= nx-1; i++) |
for (i = 1; i <= nx-2; i++) |
{ | { |
for (j = 0; j <= ny-1; j++) |
for (j = 1; j <= ny-2; j++) |
{ | { |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
|
if ( (derx_bt[j * nx + i] + dery_bt[j * nx + i]) == 0) continue; |
|
if isnan(bt[j * nx + i]) continue; |
|
if isnan(bt[(j+1) * nx + i]) continue; |
|
if isnan(bt[(j-1) * nx + i]) continue; |
|
if isnan(bt[j * nx + i-1]) continue; |
|
if isnan(bt[j * nx + i+1]) continue; |
|
if isnan(bt_err[j * nx + i]) continue; |
if isnan(derx_bt[j * nx + i]) continue; | if isnan(derx_bt[j * nx + i]) continue; |
if isnan(dery_bt[j * nx + i]) continue; | if isnan(dery_bt[j * nx + i]) continue; |
sum += sqrt( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] ); /* Units of Gauss */ | sum += sqrt( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] ); /* Units of Gauss */ |
|
err += (((bt[(j+1) * nx + i]-bt[(j-1) * nx + i])*(bt[(j+1) * nx + i]-bt[(j-1) * nx + i])) * (bt_err[(j+1) * nx + i]*bt_err[(j+1) * nx + i] + bt_err[(j-1) * nx + i]*bt_err[(j-1) * nx + i])) / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] ))+ |
|
(((bt[j * nx + (i+1)]-bt[j * nx + (i-1)])*(bt[j * nx + (i+1)]-bt[j * nx + (i-1)])) * (bt_err[j * nx + (i+1)]*bt_err[j * nx + (i+1)] + bt_err[j * nx + (i-1)]*bt_err[j * nx + (i-1)])) / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] )) ; |
count_mask++; | count_mask++; |
} | } |
} | } |
| |
*mean_derivative_btotal_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram |
*mean_derivative_btotal_ptr = (sum)/(count_mask); |
printf("*mean_derivative_btotal_ptr=%f\n",*mean_derivative_btotal_ptr); |
*mean_derivative_btotal_err_ptr = (sqrt(err))/(count_mask); |
|
//printf("MEANGBT=%f\n",*mean_derivative_btotal_ptr); |
|
//printf("MEANGBT_err=%f\n",*mean_derivative_btotal_err_ptr); |
|
|
return 0; | return 0; |
} | } |
| |
Line 273 int computeBtotalderivative(float *bt, i |
|
Line 337 int computeBtotalderivative(float *bt, i |
|
/*===========================================*/ | /*===========================================*/ |
/* Example function 6: Derivative of Bh SQRT( (dBh/dx)^2 + (dBh/dy)^2 ) */ | /* Example function 6: Derivative of Bh SQRT( (dBh/dx)^2 + (dBh/dy)^2 ) */ |
| |
int computeBhderivative(float *bh, int *dims, float *mean_derivative_bh_ptr, int *mask, int *bitmask, float *derx_bh, float *dery_bh) |
int computeBhderivative(float *bh, float *bh_err, int *dims, float *mean_derivative_bh_ptr, float *mean_derivative_bh_err_ptr, int *mask, int *bitmask, float *derx_bh, float *dery_bh) |
{ | { |
| |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask=0; |
int ny = dims[1]; |
|
int i = 0; |
|
int j = 0; |
|
int count_mask = 0; |
|
double sum= 0.0; |
|
double err =0.0; |
|
*mean_derivative_bh_ptr = 0.0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
| |
*mean_derivative_bh_ptr = 0.0; |
|
float sum = 0.0; |
|
|
|
/* brute force method of calculating the derivative (no consideration for edges) */ | /* brute force method of calculating the derivative (no consideration for edges) */ |
for (i = 1; i <= nx-2; i++) | for (i = 1; i <= nx-2; i++) |
{ | { |
Line 334 int computeBhderivative(float *bh, int * |
|
Line 401 int computeBhderivative(float *bh, int * |
|
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
|
if ( (derx_bh[j * nx + i] + dery_bh[j * nx + i]) == 0) continue; |
|
if isnan(bh[j * nx + i]) continue; |
|
if isnan(bh[(j+1) * nx + i]) continue; |
|
if isnan(bh[(j-1) * nx + i]) continue; |
|
if isnan(bh[j * nx + i-1]) continue; |
|
if isnan(bh[j * nx + i+1]) continue; |
|
if isnan(bh_err[j * nx + i]) continue; |
if isnan(derx_bh[j * nx + i]) continue; | if isnan(derx_bh[j * nx + i]) continue; |
if isnan(dery_bh[j * nx + i]) continue; | if isnan(dery_bh[j * nx + i]) continue; |
sum += sqrt( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] ); /* Units of Gauss */ | sum += sqrt( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] ); /* Units of Gauss */ |
|
err += (((bh[(j+1) * nx + i]-bh[(j-1) * nx + i])*(bh[(j+1) * nx + i]-bh[(j-1) * nx + i])) * (bh_err[(j+1) * nx + i]*bh_err[(j+1) * nx + i] + bh_err[(j-1) * nx + i]*bh_err[(j-1) * nx + i])) / (16.0*( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] ))+ |
|
(((bh[j * nx + (i+1)]-bh[j * nx + (i-1)])*(bh[j * nx + (i+1)]-bh[j * nx + (i-1)])) * (bh_err[j * nx + (i+1)]*bh_err[j * nx + (i+1)] + bh_err[j * nx + (i-1)]*bh_err[j * nx + (i-1)])) / (16.0*( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] )) ; |
count_mask++; | count_mask++; |
} | } |
} | } |
| |
*mean_derivative_bh_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram | *mean_derivative_bh_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram |
|
*mean_derivative_bh_err_ptr = (sqrt(err))/(count_mask); // error in the quantity (sum)/(count_mask) |
|
//printf("MEANGBH=%f\n",*mean_derivative_bh_ptr); |
|
//printf("MEANGBH_err=%f\n",*mean_derivative_bh_err_ptr); |
|
|
return 0; | return 0; |
} | } |
| |
/*===========================================*/ | /*===========================================*/ |
/* Example function 7: Derivative of B_vertical SQRT( (dBz/dx)^2 + (dBz/dy)^2 ) */ | /* Example function 7: Derivative of B_vertical SQRT( (dBz/dx)^2 + (dBz/dy)^2 ) */ |
| |
int computeBzderivative(float *bz, int *dims, float *mean_derivative_bz_ptr, int *mask, int *bitmask, float *derx_bz, float *dery_bz) |
int computeBzderivative(float *bz, float *bz_err, int *dims, float *mean_derivative_bz_ptr, float *mean_derivative_bz_err_ptr, int *mask, int *bitmask, float *derx_bz, float *dery_bz) |
{ | { |
| |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask=0; |
int ny = dims[1]; |
|
int i = 0; |
|
int j = 0; |
|
int count_mask = 0; |
|
double sum = 0.0; |
|
double err = 0.0; |
|
*mean_derivative_bz_ptr = 0.0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
| |
*mean_derivative_bz_ptr = 0.0; |
|
float sum = 0.0; |
|
|
|
/* brute force method of calculating the derivative (no consideration for edges) */ | /* brute force method of calculating the derivative (no consideration for edges) */ |
for (i = 1; i <= nx-2; i++) | for (i = 1; i <= nx-2; i++) |
{ | { |
Line 414 int computeBzderivative(float *bz, int * |
|
Line 497 int computeBzderivative(float *bz, int * |
|
{ | { |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
// if ( (derx_bz[j * nx + i]-dery_bz[j * nx + i]) == 0) continue; |
|
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
|
if ( (derx_bz[j * nx + i] + dery_bz[j * nx + i]) == 0) continue; |
if isnan(bz[j * nx + i]) continue; | if isnan(bz[j * nx + i]) continue; |
|
if isnan(bz[(j+1) * nx + i]) continue; |
|
if isnan(bz[(j-1) * nx + i]) continue; |
|
if isnan(bz[j * nx + i-1]) continue; |
|
if isnan(bz[j * nx + i+1]) continue; |
|
if isnan(bz_err[j * nx + i]) continue; |
if isnan(derx_bz[j * nx + i]) continue; | if isnan(derx_bz[j * nx + i]) continue; |
if isnan(dery_bz[j * nx + i]) continue; | if isnan(dery_bz[j * nx + i]) continue; |
sum += sqrt( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] ); /* Units of Gauss */ | sum += sqrt( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] ); /* Units of Gauss */ |
|
err += (((bz[(j+1) * nx + i]-bz[(j-1) * nx + i])*(bz[(j+1) * nx + i]-bz[(j-1) * nx + i])) * (bz_err[(j+1) * nx + i]*bz_err[(j+1) * nx + i] + bz_err[(j-1) * nx + i]*bz_err[(j-1) * nx + i])) / |
|
(16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] )) + |
|
(((bz[j * nx + (i+1)]-bz[j * nx + (i-1)])*(bz[j * nx + (i+1)]-bz[j * nx + (i-1)])) * (bz_err[j * nx + (i+1)]*bz_err[j * nx + (i+1)] + bz_err[j * nx + (i-1)]*bz_err[j * nx + (i-1)])) / |
|
(16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] )) ; |
count_mask++; | count_mask++; |
} | } |
} | } |
| |
*mean_derivative_bz_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram | *mean_derivative_bz_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram |
|
*mean_derivative_bz_err_ptr = (sqrt(err))/(count_mask); // error in the quantity (sum)/(count_mask) |
|
//printf("MEANGBZ=%f\n",*mean_derivative_bz_ptr); |
|
//printf("MEANGBZ_err=%f\n",*mean_derivative_bz_err_ptr); |
|
|
return 0; | return 0; |
} | } |
| |
Line 459 int computeBzderivative(float *bz, int * |
|
Line 555 int computeBzderivative(float *bz, int * |
|
// (Gauss/pix)(1/CDELT1)(RSUN_OBS/RSUN_REF)(0.00010)(1/MUNAUGHT)(CDELT1)(CDELT1)(RSUN_REF/RSUN_OBS)(RSUN_REF/RSUN_OBS) | // (Gauss/pix)(1/CDELT1)(RSUN_OBS/RSUN_REF)(0.00010)(1/MUNAUGHT)(CDELT1)(CDELT1)(RSUN_REF/RSUN_OBS)(RSUN_REF/RSUN_OBS) |
// = (Gauss/pix)(0.00010)(1/MUNAUGHT)(CDELT1)(RSUN_REF/RSUN_OBS) | // = (Gauss/pix)(0.00010)(1/MUNAUGHT)(CDELT1)(RSUN_REF/RSUN_OBS) |
| |
int computeJz(float *bx, float *by, int *dims, float *jz, |
|
int *mask, int *bitmask, |
|
float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery) |
|
| |
|
// Comment out random number generator, which can only run on solar3 |
|
//int computeJz(float *bx_err, float *by_err, float *bx, float *by, int *dims, float *jz, float *jz_err, float *jz_err_squared, |
|
// int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery, float *noisebx, |
|
// float *noiseby, float *noisebz) |
| |
|
int computeJz(float *bx_err, float *by_err, float *bx, float *by, int *dims, float *jz, float *jz_err, float *jz_err_squared, |
|
int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery) |
| |
{ |
|
| |
int nx = dims[0], ny = dims[1]; |
{ |
int i, j, count_mask=0; |
int nx = dims[0]; |
|
int ny = dims[1]; |
|
int i = 0; |
|
int j = 0; |
|
int count_mask = 0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
float curl=0.0, us_i=0.0,test_perimeter=0.0,mean_curl=0.0; |
|
|
|
| |
|
/* Calculate the derivative*/ |
/* brute force method of calculating the derivative (no consideration for edges) */ | /* brute force method of calculating the derivative (no consideration for edges) */ |
|
|
for (i = 1; i <= nx-2; i++) | for (i = 1; i <= nx-2; i++) |
{ | { |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
Line 484 int computeJz(float *bx, float *by, int |
|
Line 586 int computeJz(float *bx, float *by, int |
|
} | } |
} | } |
| |
/* brute force method of calculating the derivative (no consideration for edges) */ |
|
for (i = 0; i <= nx-1; i++) | for (i = 0; i <= nx-1; i++) |
{ | { |
for (j = 1; j <= ny-2; j++) | for (j = 1; j <= ny-2; j++) |
Line 494 int computeJz(float *bx, float *by, int |
|
Line 595 int computeJz(float *bx, float *by, int |
|
} | } |
} | } |
| |
|
// consider the edges |
/* consider the edges */ |
|
i=0; | i=0; |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
Line 524 int computeJz(float *bx, float *by, int |
|
Line 624 int computeJz(float *bx, float *by, int |
|
dery[j * nx + i] = ( (3*bx[j * nx + i]) + (-4*bx[(j-1) * nx + i]) - (-bx[(j-2) * nx + i]) )*0.5; | dery[j * nx + i] = ( (3*bx[j * nx + i]) + (-4*bx[(j-1) * nx + i]) - (-bx[(j-2) * nx + i]) )*0.5; |
} | } |
| |
|
for (i = 1; i <= nx-2; i++) |
for (i = 0; i <= nx-1; i++) |
|
{ | { |
for (j = 0; j <= ny-1; j++) |
for (j = 1; j <= ny-2; j++) |
{ | { |
/* calculate jz at all points */ |
// calculate jz at all points |
jz[j * nx + i] = (derx[j * nx + i]-dery[j * nx + i]); /* jz is in units of Gauss/pix */ |
|
|
jz[j * nx + i] = (derx[j * nx + i]-dery[j * nx + i]); // jz is in units of Gauss/pix |
|
jz_err[j * nx + i] = 0.5*sqrt( (bx_err[(j+1) * nx + i]*bx_err[(j+1) * nx + i]) + (bx_err[(j-1) * nx + i]*bx_err[(j-1) * nx + i]) + |
|
(by_err[j * nx + (i+1)]*by_err[j * nx + (i+1)]) + (by_err[j * nx + (i-1)]*by_err[j * nx + (i-1)]) ) ; |
|
jz_err_squared[j * nx + i]= (jz_err[j * nx + i]*jz_err[j * nx + i]); |
count_mask++; | count_mask++; |
|
|
} | } |
} | } |
|
|
return 0; | return 0; |
} | } |
| |
/*===========================================*/ | /*===========================================*/ |
| |
/* Example function 9: Compute quantities on smoothed Jz array */ |
/* Example function 9: Compute quantities on Jz array */ |
|
// Compute mean and total current on Jz array. |
// All of the subsequent functions, including this one, use a smoothed Jz array. The smoothing is performed by Jesper's |
|
// fresize routines. These routines are located at /cvs/JSOC/proj/libs/interpolate. A Gaussian with a FWHM of 4 pixels |
|
// and truncation width of 12 pixels is used to smooth the array; however, a quick analysis shows that the mean values |
|
// of qualities like Jz and helicity do not change much as a result of smoothing. The smoothed array will, of course, |
|
// give a lower total Jz as the stron field pixels have been smoothed out to neighboring weaker field pixels. |
|
| |
int computeJzsmooth(float *bx, float *by, int *dims, float *jz_smooth, |
int computeJzsmooth(float *bx, float *by, int *dims, float *jz, float *jz_smooth, float *jz_err, float *jz_rms_err, float *jz_err_squared_smooth, |
float *mean_jz_ptr, float *us_i_ptr, int *mask, int *bitmask, |
float *mean_jz_ptr, float *mean_jz_err_ptr, float *us_i_ptr, float *us_i_err_ptr, int *mask, int *bitmask, |
float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery) | float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery) |
| |
{ | { |
| |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask=0; |
int ny = dims[1]; |
|
int i = 0; |
|
int j = 0; |
|
int count_mask = 0; |
|
double curl = 0.0; |
|
double us_i = 0.0; |
|
double err = 0.0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
| |
*mean_jz_ptr = 0.0; |
|
float curl=0.0, us_i=0.0,test_perimeter=0.0,mean_curl=0.0; |
|
|
|
|
|
/* At this point, use the smoothed Jz array with a Gaussian (FWHM of 4 pix and truncation width of 12 pixels) but keep the original array dimensions*/ | /* At this point, use the smoothed Jz array with a Gaussian (FWHM of 4 pix and truncation width of 12 pixels) but keep the original array dimensions*/ |
for (i = 0; i <= nx-1; i++) | for (i = 0; i <= nx-1; i++) |
{ | { |
Line 571 int computeJzsmooth(float *bx, float *by |
|
Line 671 int computeJzsmooth(float *bx, float *by |
|
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
if isnan(derx[j * nx + i]) continue; | if isnan(derx[j * nx + i]) continue; |
if isnan(dery[j * nx + i]) continue; | if isnan(dery[j * nx + i]) continue; |
if isnan(jz_smooth[j * nx + i]) continue; |
if isnan(jz[j * nx + i]) continue; |
//printf("%d,%d,%f\n",i,j,jz_smooth[j * nx + i]); |
curl += (jz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref)*(0.00010)*(1/MUNAUGHT)*(1000.); /* curl is in units of mA / m^2 */ |
curl += (jz_smooth[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref)*(0.00010)*(1/MUNAUGHT)*(1000.); /* curl is in units of mA / m^2 */ |
us_i += fabs(jz[j * nx + i])*(cdelt1/1)*(rsun_ref/rsun_obs)*(0.00010)*(1/MUNAUGHT); /* us_i is in units of A */ |
us_i += fabs(jz_smooth[j * nx + i])*(cdelt1/1)*(rsun_ref/rsun_obs)*(0.00010)*(1/MUNAUGHT); /* us_i is in units of A */ |
err += (jz_err[j * nx + i]*jz_err[j * nx + i]); |
count_mask++; | count_mask++; |
} | } |
} | } |
| |
/* Calculate mean vertical current density (mean_curl) and total unsigned vertical current (us_i) using smoothed Jz array and continue conditions above */ |
/* Calculate mean vertical current density (mean_jz) and total unsigned vertical current (us_i) using smoothed Jz array and continue conditions above */ |
mean_curl = (curl/count_mask); |
|
printf("mean_curl=%f\n",mean_curl); |
|
printf("cdelt1, what is it?=%f\n",cdelt1); |
|
*mean_jz_ptr = curl/(count_mask); /* mean_jz gets populated as MEANJZD */ | *mean_jz_ptr = curl/(count_mask); /* mean_jz gets populated as MEANJZD */ |
printf("count_mask=%d\n",count_mask); |
*mean_jz_err_ptr = (sqrt(err)/count_mask)*((1/cdelt1)*(rsun_obs/rsun_ref)*(0.00010)*(1/MUNAUGHT)*(1000.)); // error in the quantity MEANJZD |
|
|
*us_i_ptr = (us_i); /* us_i gets populated as TOTUSJZ */ | *us_i_ptr = (us_i); /* us_i gets populated as TOTUSJZ */ |
|
*us_i_err_ptr = (sqrt(err))*((cdelt1/1)*(rsun_ref/rsun_obs)*(0.00010)*(1/MUNAUGHT)); // error in the quantity TOTUSJZ |
|
|
|
//printf("MEANJZD=%f\n",*mean_jz_ptr); |
|
//printf("MEANJZD_err=%f\n",*mean_jz_err_ptr); |
|
|
|
//printf("TOTUSJZ=%g\n",*us_i_ptr); |
|
//printf("TOTUSJZ_err=%g\n",*us_i_err_ptr); |
|
|
return 0; | return 0; |
| |
} | } |
Line 595 int computeJzsmooth(float *bx, float *by |
|
Line 701 int computeJzsmooth(float *bx, float *by |
|
/* Example function 10: Twist Parameter, alpha */ | /* Example function 10: Twist Parameter, alpha */ |
| |
// The twist parameter, alpha, is defined as alpha = Jz/Bz. In this case, the calculation | // The twist parameter, alpha, is defined as alpha = Jz/Bz. In this case, the calculation |
// for alpha is calculated in the following way (different from Leka and Barnes' approach): |
// for alpha is weighted by Bz (following Hagino et al., http://adsabs.harvard.edu/abs/2004PASJ...56..831H): |
| |
// (sum of all positive Bz + abs(sum of all negative Bz)) = avg Bz |
// numerator = sum of all Jz*Bz |
// (abs(sum of all Jz at positive Bz) + abs(sum of all Jz at negative Bz)) = avg Jz |
// denominator = sum of Bz*Bz |
// avg alpha = avg Jz / avg Bz |
// alpha = numerator/denominator |
|
|
// The sign is assigned as follows: |
|
// If the sum of all Bz is greater than 0, then evaluate the sum of Jz at the positive Bz pixels. |
|
// If this value is > 0, then alpha is > 0. |
|
// If this value is < 0, then alpha is <0. |
|
// |
|
// If the sum of all Bz is less than 0, then evaluate the sum of Jz at the negative Bz pixels. |
|
// If this value is > 0, then alpha is < 0. |
|
// If this value is < 0, then alpha is > 0. |
|
| |
// The units of alpha are in 1/Mm | // The units of alpha are in 1/Mm |
// The units of Jz are in Gauss/pix; the units of Bz are in Gauss. | // The units of Jz are in Gauss/pix; the units of Bz are in Gauss. |
Line 617 int computeJzsmooth(float *bx, float *by |
|
Line 714 int computeJzsmooth(float *bx, float *by |
|
// = (Gauss/pix)(1/Gauss)(1/CDELT1)(RSUN_OBS/RSUN_REF)(10^6) | // = (Gauss/pix)(1/Gauss)(1/CDELT1)(RSUN_OBS/RSUN_REF)(10^6) |
// = 1/Mm | // = 1/Mm |
| |
int computeAlpha(float *bz, int *dims, float *jz_smooth, float *mean_alpha_ptr, int *mask, int *bitmask, |
int computeAlpha(float *jz_err, float *bz_err, float *bz, int *dims, float *jz, float *jz_smooth, float *mean_alpha_ptr, float *mean_alpha_err_ptr, int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) |
float cdelt1, double rsun_ref, double rsun_obs) |
|
| |
{ | { |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j=0; |
int ny = dims[1]; |
|
int i = 0; |
|
int j = 0; |
|
double alpha_total = 0.0; |
|
double C = ((1/cdelt1)*(rsun_obs/rsun_ref)*(1000000.)); |
|
double total = 0.0; |
|
double A = 0.0; |
|
double B = 0.0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
|
|
*mean_alpha_ptr = 0.0; |
|
float aa, bb, cc, bznew, alpha2, sum1, sum2, sum3, sum4, sum, sum5, sum6=0.0; |
|
|
|
for (i = 1; i < nx-1; i++) | for (i = 1; i < nx-1; i++) |
{ | { |
for (j = 1; j < ny-1; j++) | for (j = 1; j < ny-1; j++) |
{ | { |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
if isnan(jz_smooth[j * nx + i]) continue; |
if isnan(jz[j * nx + i]) continue; |
if isnan(bz[j * nx + i]) continue; | if isnan(bz[j * nx + i]) continue; |
|
if (jz[j * nx + i] == 0.0) continue; |
if (bz[j * nx + i] == 0.0) continue; | if (bz[j * nx + i] == 0.0) continue; |
if (bz[j * nx + i] > 0) sum1 += ( bz[j * nx + i]); |
A += jz[j*nx+i]*bz[j*nx+i]; |
if (bz[j * nx + i] <= 0) sum2 += ( bz[j * nx + i]); |
B += bz[j*nx+i]*bz[j*nx+i]; |
if (bz[j * nx + i] > 0) sum3 += ( jz_smooth[j * nx + i]); |
|
if (bz[j * nx + i] <= 0) sum4 += ( jz_smooth[j * nx + i]); |
|
sum5 += bz[j * nx + i]; |
|
} | } |
} | } |
| |
sum = (((fabs(sum3))+(fabs(sum4)))/((fabs(sum2))+sum1))*((1/cdelt1)*(rsun_obs/rsun_ref)*(1000000.)) ; /* the units for (jz/bz) are 1/Mm */ |
for (i = 1; i < nx-1; i++) |
|
{ |
|
for (j = 1; j < ny-1; j++) |
|
{ |
|
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
|
if isnan(jz[j * nx + i]) continue; |
|
if isnan(bz[j * nx + i]) continue; |
|
if (jz[j * nx + i] == 0.0) continue; |
|
if (bz[j * nx + i] == 0.0) continue; |
|
total += bz[j*nx+i]*bz[j*nx+i]*jz_err[j*nx+i]*jz_err[j*nx+i] + (jz[j*nx+i]-2*bz[j*nx+i]*A/B)*(jz[j*nx+i]-2*bz[j*nx+i]*A/B)*bz_err[j*nx+i]*bz_err[j*nx+i]; |
|
} |
|
} |
| |
/* Determine the sign of alpha */ |
/* Determine the absolute value of alpha. The units for alpha are 1/Mm */ |
if ((sum5 > 0) && (sum3 > 0)) sum=sum; |
alpha_total = ((A/B)*C); |
if ((sum5 > 0) && (sum3 <= 0)) sum=-sum; |
*mean_alpha_ptr = alpha_total; |
if ((sum5 < 0) && (sum4 <= 0)) sum=sum; |
*mean_alpha_err_ptr = (C/B)*(sqrt(total)); |
if ((sum5 < 0) && (sum4 > 0)) sum=-sum; |
|
| |
*mean_alpha_ptr = sum; /* Units are 1/Mm */ |
|
return 0; | return 0; |
} | } |
| |
/*===========================================*/ | /*===========================================*/ |
/* Example function 11: Helicity (mean current helicty, mean unsigned current helicity, and mean absolute current helicity) */ |
/* Example function 11: Helicity (mean current helicty, total unsigned current helicity, absolute value of net current helicity) */ |
| |
// The current helicity is defined as Bz*Jz and the units are G^2 / m | // The current helicity is defined as Bz*Jz and the units are G^2 / m |
// The units of Jz are in G/pix; the units of Bz are in G. | // The units of Jz are in G/pix; the units of Bz are in G. |
// Therefore, the units of Bz*Jz = (Gauss)*(Gauss/pix) = (Gauss^2/pix)(pix/arcsec)(arcsec/m) |
// Therefore, the units of Bz*Jz = (Gauss)*(Gauss/pix) = (Gauss^2/pix)(pix/arcsec)(arcsec/meter) |
// = (Gauss^2/pix)(1/CDELT1)(RSUN_OBS/RSUN_REF) | // = (Gauss^2/pix)(1/CDELT1)(RSUN_OBS/RSUN_REF) |
// = G^2 / m. | // = G^2 / m. |
| |
|
int computeHelicity(float *jz_err, float *jz_rms_err, float *bz_err, float *bz, int *dims, float *jz, float *mean_ih_ptr, |
int computeHelicity(float *bz, int *dims, float *jz_smooth, float *mean_ih_ptr, float *total_us_ih_ptr, |
float *mean_ih_err_ptr, float *total_us_ih_ptr, float *total_abs_ih_ptr, |
float *total_abs_ih_ptr, int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) |
float *total_us_ih_err_ptr, float *total_abs_ih_err_ptr, int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) |
| |
{ | { |
| |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask=0; |
int ny = dims[1]; |
|
int i = 0; |
|
int j = 0; |
|
int count_mask = 0; |
|
double sum = 0.0; |
|
double sum2 = 0.0; |
|
double err = 0.0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
| |
*mean_ih_ptr = 0.0; |
|
float sum=0.0, sum2=0.0; |
|
|
|
for (i = 0; i < nx; i++) | for (i = 0; i < nx; i++) |
{ | { |
for (j = 0; j < ny; j++) | for (j = 0; j < ny; j++) |
{ | { |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
if isnan(jz_smooth[j * nx + i]) continue; |
if isnan(jz[j * nx + i]) continue; |
if isnan(bz[j * nx + i]) continue; | if isnan(bz[j * nx + i]) continue; |
|
if isnan(jz_err[j * nx + i]) continue; |
|
if isnan(bz_err[j * nx + i]) continue; |
if (bz[j * nx + i] == 0.0) continue; | if (bz[j * nx + i] == 0.0) continue; |
if (jz_smooth[j * nx + i] == 0.0) continue; |
if (jz[j * nx + i] == 0.0) continue; |
sum += (jz_smooth[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); |
sum += (jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); // contributes to MEANJZH and ABSNJZH |
sum2 += fabs(jz_smooth[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); |
sum2 += fabs(jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); // contributes to TOTUSJH |
|
err += (jz_err[j * nx + i]*jz_err[j * nx + i]*bz[j * nx + i]*bz[j * nx + i]) + (bz_err[j * nx + i]*bz_err[j * nx + i]*jz[j * nx + i]*jz[j * nx + i]); |
count_mask++; | count_mask++; |
} | } |
} | } |
| |
printf("sum/count_mask=%f\n",sum/count_mask); |
|
printf("(1/cdelt1)*(rsun_obs/rsun_ref)=%f\n",(1/cdelt1)*(rsun_obs/rsun_ref)); |
|
*mean_ih_ptr = sum/count_mask; /* Units are G^2 / m ; keyword is MEANJZH */ | *mean_ih_ptr = sum/count_mask; /* Units are G^2 / m ; keyword is MEANJZH */ |
*total_us_ih_ptr = sum2; /* Units are G^2 / m */ |
*total_us_ih_ptr = sum2 ; /* Units are G^2 / m ; keyword is TOTUSJH */ |
*total_abs_ih_ptr= fabs(sum); /* Units are G^2 / m */ |
*total_abs_ih_ptr = fabs(sum) ; /* Units are G^2 / m ; keyword is ABSNJZH */ |
|
|
|
*mean_ih_err_ptr = (sqrt(err)/count_mask)*(1/cdelt1)*(rsun_obs/rsun_ref) ; // error in the quantity MEANJZH |
|
*total_us_ih_err_ptr = (sqrt(err))*(1/cdelt1)*(rsun_obs/rsun_ref) ; // error in the quantity TOTUSJH |
|
*total_abs_ih_err_ptr = (sqrt(err))*(1/cdelt1)*(rsun_obs/rsun_ref) ; // error in the quantity ABSNJZH |
|
|
|
//printf("MEANJZH=%f\n",*mean_ih_ptr); |
|
//printf("MEANJZH_err=%f\n",*mean_ih_err_ptr); |
|
|
|
//printf("TOTUSJH=%f\n",*total_us_ih_ptr); |
|
//printf("TOTUSJH_err=%f\n",*total_us_ih_err_ptr); |
|
|
|
//printf("ABSNJZH=%f\n",*total_abs_ih_ptr); |
|
//printf("ABSNJZH_err=%f\n",*total_abs_ih_err_ptr); |
| |
return 0; | return 0; |
} | } |
Line 712 int computeHelicity(float *bz, int *dims |
|
Line 835 int computeHelicity(float *bz, int *dims |
|
// The units of jz are in G/pix. In this case, we would have the following: | // The units of jz are in G/pix. In this case, we would have the following: |
// Jz = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS)(RSUN_REF/RSUN_OBS)(RSUN_OBS/RSUN_REF), | // Jz = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS)(RSUN_REF/RSUN_OBS)(RSUN_OBS/RSUN_REF), |
// = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS) | // = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS) |
|
// |
|
// The error in this quantity is the same as the error in the mean vertical current (mean_jz_err). |
| |
int computeSumAbsPerPolarity(float *bz, float *jz_smooth, int *dims, float *totaljzptr, |
int computeSumAbsPerPolarity(float *jz_err, float *bz_err, float *bz, float *jz, int *dims, float *totaljzptr, float *totaljz_err_ptr, |
int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) | int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) |
| |
{ | { |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask=0; |
int ny = dims[1]; |
|
int i=0; |
|
int j=0; |
|
int count_mask=0; |
|
double sum1=0.0; |
|
double sum2=0.0; |
|
double err=0.0; |
|
*totaljzptr=0.0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
| |
*totaljzptr=0.0; |
|
float sum1=0.0, sum2=0.0; |
|
|
|
for (i = 0; i < nx; i++) | for (i = 0; i < nx; i++) |
{ | { |
for (j = 0; j < ny; j++) | for (j = 0; j < ny; j++) |
{ | { |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
if isnan(bz[j * nx + i]) continue; | if isnan(bz[j * nx + i]) continue; |
if (bz[j * nx + i] > 0) sum1 += ( jz_smooth[j * nx + i])*(1/cdelt1)*(0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs); |
if isnan(jz[j * nx + i]) continue; |
if (bz[j * nx + i] <= 0) sum2 += ( jz_smooth[j * nx + i])*(1/cdelt1)*(0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs); |
if (bz[j * nx + i] > 0) sum1 += ( jz[j * nx + i])*(1/cdelt1)*(0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs); |
|
if (bz[j * nx + i] <= 0) sum2 += ( jz[j * nx + i])*(1/cdelt1)*(0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs); |
|
err += (jz_err[j * nx + i]*jz_err[j * nx + i]); |
|
count_mask++; |
} | } |
} | } |
| |
*totaljzptr = fabs(sum1) + fabs(sum2); /* Units are A */ | *totaljzptr = fabs(sum1) + fabs(sum2); /* Units are A */ |
|
*totaljz_err_ptr = sqrt(err)*(1/cdelt1)*fabs((0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs)); |
|
//printf("SAVNCPP=%g\n",*totaljzptr); |
|
//printf("SAVNCPP_err=%g\n",*totaljz_err_ptr); |
|
|
return 0; | return 0; |
} | } |
| |
/*===========================================*/ | /*===========================================*/ |
/* Example function 13: Mean photospheric excess magnetic energy and total photospheric excess magnetic energy density */ | /* Example function 13: Mean photospheric excess magnetic energy and total photospheric excess magnetic energy density */ |
// The units for magnetic energy density in cgs are ergs per cubic centimeter. The formula B^2/8*PI integrated over all space, dV | // The units for magnetic energy density in cgs are ergs per cubic centimeter. The formula B^2/8*PI integrated over all space, dV |
// automatically yields erg per cubic centimeter for an input B in Gauss. |
// automatically yields erg per cubic centimeter for an input B in Gauss. Note that the 8*PI can come out of the integral; thus, |
|
// the integral is over B^2 dV and the 8*PI is divided at the end. |
// | // |
// Total magnetic energy is the magnetic energy density times dA, or the area, and the units are thus ergs/cm. To convert | // Total magnetic energy is the magnetic energy density times dA, or the area, and the units are thus ergs/cm. To convert |
// ergs per centimeter cubed to ergs per centimeter, simply multiply by the area per pixel in cm: | // ergs per centimeter cubed to ergs per centimeter, simply multiply by the area per pixel in cm: |
// erg/cm^3(CDELT1)^2(RSUN_REF/RSUN_OBS)^2(100.)^2 |
// erg/cm^3*(CDELT1^2)*(RSUN_REF/RSUN_OBS ^2)*(100.^2) |
// = erg/cm^3(0.5 arcsec/pix)^2(722500m/arcsec)^2(100cm/m)^2 |
// = erg/cm^3*(0.5 arcsec/pix)^2(722500m/arcsec)^2(100cm/m)^2 |
// = erg/cm^3(1.30501e15) |
// = erg/cm^3*(1.30501e15) |
// = erg/cm(1/pix^2) | // = erg/cm(1/pix^2) |
| |
int computeFreeEnergy(float *bx, float *by, float *bpx, float *bpy, int *dims, |
int computeFreeEnergy(float *bx_err, float *by_err, float *bx, float *by, float *bpx, float *bpy, int *dims, |
float *meanpotptr, float *totpotptr, int *mask, int *bitmask, |
float *meanpotptr, float *meanpot_err_ptr, float *totpotptr, float *totpot_err_ptr, int *mask, int *bitmask, |
float cdelt1, double rsun_ref, double rsun_obs) | float cdelt1, double rsun_ref, double rsun_obs) |
| |
{ | { |
int nx = dims[0], ny = dims[1]; |
int nx = dims[0]; |
int i, j, count_mask=0; |
int ny = dims[1]; |
|
int i = 0; |
if (nx <= 0 || ny <= 0) return 1; |
int j = 0; |
|
int count_mask = 0; |
|
double sum = 0.0; |
|
double sum1 = 0.0; |
|
double err = 0.0; |
*totpotptr=0.0; | *totpotptr=0.0; |
*meanpotptr=0.0; | *meanpotptr=0.0; |
float sum=0.0; |
|
|
if (nx <= 0 || ny <= 0) return 1; |
| |
for (i = 0; i < nx; i++) | for (i = 0; i < nx; i++) |
{ | { |
Line 773 int computeFreeEnergy(float *bx, float * |
|
Line 914 int computeFreeEnergy(float *bx, float * |
|
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
if isnan(bx[j * nx + i]) continue; | if isnan(bx[j * nx + i]) continue; |
if isnan(by[j * nx + i]) continue; | if isnan(by[j * nx + i]) continue; |
sum += (( ((bx[j * nx + i])*(bx[j * nx + i]) + (by[j * nx + i])*(by[j * nx + i]) ) - ((bpx[j * nx + i])*(bpx[j * nx + i]) + (bpy[j * nx + i])*(bpy[j * nx + i])) )/8.*PI); |
sum += ( ((bx[j * nx + i] - bpx[j * nx + i])*(bx[j * nx + i] - bpx[j * nx + i])) + ((by[j * nx + i] - bpy[j * nx + i])*(by[j * nx + i] - bpy[j * nx + i])) )*(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0); |
|
sum1 += ( ((bx[j * nx + i] - bpx[j * nx + i])*(bx[j * nx + i] - bpx[j * nx + i])) + ((by[j * nx + i] - bpy[j * nx + i])*(by[j * nx + i] - bpy[j * nx + i])) ); |
|
err += 4.0*(bx[j * nx + i] - bpx[j * nx + i])*(bx[j * nx + i] - bpx[j * nx + i])*(bx_err[j * nx + i]*bx_err[j * nx + i]) + |
|
4.0*(by[j * nx + i] - bpy[j * nx + i])*(by[j * nx + i] - bpy[j * nx + i])*(by_err[j * nx + i]*by_err[j * nx + i]); |
count_mask++; | count_mask++; |
} | } |
} | } |
| |
*meanpotptr = (sum)/(count_mask); /* Units are ergs per cubic centimeter */ |
/* Units of meanpotptr are ergs per centimeter */ |
*totpotptr = sum*(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0)*(count_mask); /* Units of sum are ergs/cm^3, units of factor are cm^2/pix^2, units of count_mask are pix^2; therefore, units of totpotptr are ergs per centimeter */ |
*meanpotptr = (sum1) / (count_mask*8.*PI) ; /* Units are ergs per cubic centimeter */ |
|
*meanpot_err_ptr = (sqrt(err)) / (count_mask*8.*PI); // error in the quantity (sum)/(count_mask) |
|
|
|
/* Units of sum are ergs/cm^3, units of factor are cm^2/pix^2; therefore, units of totpotptr are ergs per centimeter */ |
|
*totpotptr = (sum)/(8.*PI); |
|
*totpot_err_ptr = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0*(1/(8.*PI))); |
|
|
|
//printf("MEANPOT=%g\n",*meanpotptr); |
|
//printf("MEANPOT_err=%g\n",*meanpot_err_ptr); |
|
|
|
//printf("TOTPOT=%g\n",*totpotptr); |
|
//printf("TOTPOT_err=%g\n",*totpot_err_ptr); |
|
|
return 0; | return 0; |
} | } |
| |
/*===========================================*/ | /*===========================================*/ |
/* Example function 14: Mean 3D shear angle, area with shear greater than 45, mean horizontal shear angle, area with horizontal shear angle greater than 45 */ | /* Example function 14: Mean 3D shear angle, area with shear greater than 45, mean horizontal shear angle, area with horizontal shear angle greater than 45 */ |
| |
int computeShearAngle(float *bx, float *by, float *bz, float *bpx, float *bpy, float *bpz, int *dims, |
int computeShearAngle(float *bx_err, float *by_err, float *bz_err, float *bx, float *by, float *bz, float *bpx, float *bpy, float *bpz, int *dims, |
float *meanshear_angleptr, float *area_w_shear_gt_45ptr, |
float *meanshear_angleptr, float *meanshear_angle_err_ptr, float *area_w_shear_gt_45ptr, int *mask, int *bitmask) |
float *meanshear_anglehptr, float *area_w_shear_gt_45hptr, |
|
int *mask, int *bitmask) |
|
{ |
|
int nx = dims[0], ny = dims[1]; |
|
int i, j; |
|
| |
if (nx <= 0 || ny <= 0) return 1; |
|
| |
|
{ |
|
int nx = dims[0]; |
|
int ny = dims[1]; |
|
int i = 0; |
|
int j = 0; |
|
float count_mask = 0; |
|
float count = 0; |
|
double dotproduct = 0.0; |
|
double magnitude_potential = 0.0; |
|
double magnitude_vector = 0.0; |
|
double shear_angle = 0.0; |
|
double denominator = 0.0; |
|
double term1 = 0.0; |
|
double term2 = 0.0; |
|
double term3 = 0.0; |
|
double sumsum = 0.0; |
|
double err = 0.0; |
|
double part1 = 0.0; |
|
double part2 = 0.0; |
|
double part3 = 0.0; |
*area_w_shear_gt_45ptr=0.0; | *area_w_shear_gt_45ptr=0.0; |
*meanshear_angleptr=0.0; | *meanshear_angleptr=0.0; |
float dotproduct, magnitude_potential, magnitude_vector, shear_angle=0.0, sum = 0.0, count=0.0, count_mask=0.0; |
|
float dotproducth, magnitude_potentialh, magnitude_vectorh, shear_angleh=0.0, sum1 = 0.0, counth = 0.0; |
if (nx <= 0 || ny <= 0) return 1; |
| |
for (i = 0; i < nx; i++) | for (i = 0; i < nx; i++) |
{ | { |
Line 812 int computeShearAngle(float *bx, float * |
|
Line 982 int computeShearAngle(float *bx, float * |
|
if isnan(bz[j * nx + i]) continue; | if isnan(bz[j * nx + i]) continue; |
if isnan(bx[j * nx + i]) continue; | if isnan(bx[j * nx + i]) continue; |
if isnan(by[j * nx + i]) continue; | if isnan(by[j * nx + i]) continue; |
/* For mean 3D shear angle, area with shear greater than 45*/ |
if isnan(bx_err[j * nx + i]) continue; |
|
if isnan(by_err[j * nx + i]) continue; |
|
if isnan(bz_err[j * nx + i]) continue; |
|
|
|
/* For mean 3D shear angle, percentage with shear greater than 45*/ |
dotproduct = (bpx[j * nx + i])*(bx[j * nx + i]) + (bpy[j * nx + i])*(by[j * nx + i]) + (bpz[j * nx + i])*(bz[j * nx + i]); | dotproduct = (bpx[j * nx + i])*(bx[j * nx + i]) + (bpy[j * nx + i])*(by[j * nx + i]) + (bpz[j * nx + i])*(bz[j * nx + i]); |
magnitude_potential = sqrt((bpx[j * nx + i]*bpx[j * nx + i]) + (bpy[j * nx + i]*bpy[j * nx + i]) + (bpz[j * nx + i]*bpz[j * nx + i])); | magnitude_potential = sqrt((bpx[j * nx + i]*bpx[j * nx + i]) + (bpy[j * nx + i]*bpy[j * nx + i]) + (bpz[j * nx + i]*bpz[j * nx + i])); |
magnitude_vector = sqrt( (bx[j * nx + i]*bx[j * nx + i]) + (by[j * nx + i]*by[j * nx + i]) + (bz[j * nx + i]*bz[j * nx + i]) ); | magnitude_vector = sqrt( (bx[j * nx + i]*bx[j * nx + i]) + (by[j * nx + i]*by[j * nx + i]) + (bz[j * nx + i]*bz[j * nx + i]) ); |
|
//printf("dotproduct=%f\n",dotproduct); |
|
//printf("magnitude_potential=%f\n",magnitude_potential); |
|
//printf("magnitude_vector=%f\n",magnitude_vector); |
|
|
shear_angle = acos(dotproduct/(magnitude_potential*magnitude_vector))*(180./PI); | shear_angle = acos(dotproduct/(magnitude_potential*magnitude_vector))*(180./PI); |
|
sumsum += shear_angle; |
|
//printf("shear_angle=%f\n",shear_angle); |
count ++; | count ++; |
sum += shear_angle ; |
|
if (shear_angle > 45) count_mask ++; | if (shear_angle > 45) count_mask ++; |
|
|
|
// For the error analysis |
|
|
|
term1 = bx[j * nx + i]*by[j * nx + i]*bpy[j * nx + i] - by[j * nx + i]*by[j * nx + i]*bpx[j * nx + i] + bz[j * nx + i]*bx[j * nx + i]*bpz[j * nx + i] - bz[j * nx + i]*bz[j * nx + i]*bpx[j * nx + i]; |
|
term2 = bx[j * nx + i]*bx[j * nx + i]*bpy[j * nx + i] - bx[j * nx + i]*by[j * nx + i]*bpx[j * nx + i] + bx[j * nx + i]*bz[j * nx + i]*bpy[j * nx + i] - bz[j * nx + i]*by[j * nx + i]*bpz[j * nx + i]; |
|
term3 = bx[j * nx + i]*bx[j * nx + i]*bpz[j * nx + i] - bx[j * nx + i]*bz[j * nx + i]*bpx[j * nx + i] + by[j * nx + i]*by[j * nx + i]*bpz[j * nx + i] - by[j * nx + i]*bz[j * nx + i]*bpy[j * nx + i]; |
|
|
|
part1 = bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]; |
|
part2 = bpx[j * nx + i]*bpx[j * nx + i] + bpy[j * nx + i]*bpy[j * nx + i] + bpz[j * nx + i]*bpz[j * nx + i]; |
|
part3 = bx[j * nx + i]*bpx[j * nx + i] + by[j * nx + i]*bpy[j * nx + i] + bz[j * nx + i]*bpz[j * nx + i]; |
|
|
|
// denominator is squared |
|
denominator = part1*part1*part1*part2*(1.0-((part3*part3)/(part1*part2))); |
|
|
|
err = (term1*term1*bx_err[j * nx + i]*bx_err[j * nx + i])/(denominator) + |
|
(term1*term1*bx_err[j * nx + i]*bx_err[j * nx + i])/(denominator) + |
|
(term1*term1*bx_err[j * nx + i]*bx_err[j * nx + i])/(denominator) ; |
|
|
} | } |
} | } |
|
|
/* For mean 3D shear angle, area with shear greater than 45*/ | /* For mean 3D shear angle, area with shear greater than 45*/ |
*meanshear_angleptr = (sum)/(count); /* Units are degrees */ |
*meanshear_angleptr = (sumsum)/(count); /* Units are degrees */ |
printf("count_mask=%f\n",count_mask); |
*meanshear_angle_err_ptr = (sqrt(err)/count_mask)*(180./PI); |
printf("count=%f\n",count); |
|
*area_w_shear_gt_45ptr = (count_mask/(count))*(100.); /* The area here is a fractional area -- the % of the total area */ |
/* The area here is a fractional area -- the % of the total area. This has no error associated with it. */ |
|
*area_w_shear_gt_45ptr = (count_mask/(count))*(100.0); |
|
|
|
//printf("MEANSHR=%f\n",*meanshear_angleptr); |
|
//printf("MEANSHR_err=%f\n",*meanshear_angle_err_ptr); |
|
//printf("SHRGT45=%f\n",*area_w_shear_gt_45ptr); |
| |
return 0; | return 0; |
} | } |
Line 948 void greenpot(float *bx, float *by, floa |
|
Line 1150 void greenpot(float *bx, float *by, floa |
|
| |
| |
/*===========END OF KEIJI'S CODE =========================*/ | /*===========END OF KEIJI'S CODE =========================*/ |
|
|
|
char *sw_functions_version() // Returns CVS version of sw_functions.c |
|
{ |
|
return strdup("$Id$"); |
|
} |
|
|
/* ---------------- end of this file ----------------*/ | /* ---------------- end of this file ----------------*/ |