version 1.4, 2012/12/18 23:05:10
|
version 1.8, 2013/02/09 02:39:20
|
|
|
/*=========================================== | /*=========================================== |
| |
The following 13 functions calculate the following spaceweather indices: |
The following 14 functions calculate the following spaceweather indices: |
| |
USFLUX Total unsigned flux in Maxwells | USFLUX Total unsigned flux in Maxwells |
MEANGAM Mean inclination angle, gamma, in degrees | MEANGAM Mean inclination angle, gamma, in degrees |
Line 81 int computeAbsFlux(float *bz, int *dims, |
|
Line 81 int computeAbsFlux(float *bz, int *dims, |
|
*absFlux = 0.0; | *absFlux = 0.0; |
*mean_vf_ptr =0.0; | *mean_vf_ptr =0.0; |
| |
for (j = 0; j < ny; j++) |
|
{ |
|
for (i = 0; i < nx; i++) | for (i = 0; i < nx; i++) |
{ | { |
|
for (j = 0; j < ny; j++) |
|
{ |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
if isnan(bz[j * nx + i]) continue; | if isnan(bz[j * nx + i]) continue; |
//printf("bz[j * nx + i]=%f\n",bz[j * nx + i]); |
|
sum += (fabs(bz[j * nx + i])); | sum += (fabs(bz[j * nx + i])); |
count_mask++; | count_mask++; |
} | } |
Line 115 int computeBh(float *bx, float *by, floa |
|
Line 114 int computeBh(float *bx, float *by, floa |
|
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
| |
for (j = 0; j < ny; j++) |
|
{ |
|
for (i = 0; i < nx; i++) | for (i = 0; i < nx; i++) |
{ | { |
|
for (j = 0; j < ny; j++) |
|
{ |
if isnan(bx[j * nx + i]) continue; | if isnan(bx[j * nx + i]) continue; |
if isnan(by[j * nx + i]) continue; | if isnan(by[j * nx + i]) continue; |
bh[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] ); | bh[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] ); |
Line 253 int computeBtotalderivative(float *bt, i |
|
Line 252 int computeBtotalderivative(float *bt, i |
|
} | } |
| |
| |
/* Just some print statements |
|
for (i = 0; i < nx; i++) |
|
{ |
|
for (j = 0; j < ny; j++) |
|
{ |
|
printf("j=%d\n",j); |
|
printf("i=%d\n",i); |
|
printf("dery_bt[j*nx+i]=%f\n",dery_bt[j*nx+i]); |
|
printf("derx_bt[j*nx+i]=%f\n",derx_bt[j*nx+i]); |
|
printf("bt[j*nx+i]=%f\n",bt[j*nx+i]); |
|
} |
|
} |
|
*/ |
|
|
|
for (i = 0; i <= nx-1; i++) | for (i = 0; i <= nx-1; i++) |
{ | { |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
// if ( (derx_bt[j * nx + i]-dery_bt[j * nx + i]) == 0) continue; |
|
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
|
if isnan(derx_bt[j * nx + i]) continue; |
|
if isnan(dery_bt[j * nx + i]) continue; |
sum += sqrt( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] ); /* Units of Gauss */ | sum += sqrt( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] ); /* Units of Gauss */ |
count_mask++; | count_mask++; |
} | } |
Line 343 int computeBhderivative(float *bh, int * |
|
Line 329 int computeBhderivative(float *bh, int * |
|
} | } |
| |
| |
/*Just some print statements |
|
for (i = 0; i < nx; i++) |
|
{ |
|
for (j = 0; j < ny; j++) |
|
{ |
|
printf("j=%d\n",j); |
|
printf("i=%d\n",i); |
|
printf("dery_bh[j*nx+i]=%f\n",dery_bh[j*nx+i]); |
|
printf("derx_bh[j*nx+i]=%f\n",derx_bh[j*nx+i]); |
|
printf("bh[j*nx+i]=%f\n",bh[j*nx+i]); |
|
} |
|
} |
|
*/ |
|
|
|
for (i = 0; i <= nx-1; i++) | for (i = 0; i <= nx-1; i++) |
{ | { |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
// if ( (derx_bh[j * nx + i]-dery_bh[j * nx + i]) == 0) continue; |
|
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
|
if isnan(derx_bh[j * nx + i]) continue; |
|
if isnan(dery_bh[j * nx + i]) continue; |
sum += sqrt( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] ); /* Units of Gauss */ | sum += sqrt( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] ); /* Units of Gauss */ |
count_mask++; | count_mask++; |
} | } |
Line 437 int computeBzderivative(float *bz, int * |
|
Line 410 int computeBzderivative(float *bz, int * |
|
} | } |
| |
| |
/*Just some print statements |
|
for (i = 0; i < nx; i++) |
|
{ |
|
for (j = 0; j < ny; j++) |
|
{ |
|
printf("j=%d\n",j); |
|
printf("i=%d\n",i); |
|
printf("dery_bz[j*nx+i]=%f\n",dery_bz[j*nx+i]); |
|
printf("derx_bz[j*nx+i]=%f\n",derx_bz[j*nx+i]); |
|
printf("bz[j*nx+i]=%f\n",bz[j*nx+i]); |
|
} |
|
} |
|
*/ |
|
|
|
for (i = 0; i <= nx-1; i++) | for (i = 0; i <= nx-1; i++) |
{ | { |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
Line 470 int computeBzderivative(float *bz, int * |
|
Line 429 int computeBzderivative(float *bz, int * |
|
} | } |
| |
/*===========================================*/ | /*===========================================*/ |
|
|
/* Example function 8: Current Jz = (dBy/dx) - (dBx/dy) */ | /* Example function 8: Current Jz = (dBy/dx) - (dBx/dy) */ |
| |
// In discretized space like data pixels, | // In discretized space like data pixels, |
Line 487 int computeBzderivative(float *bz, int * |
|
Line 445 int computeBzderivative(float *bz, int * |
|
// | // |
// To change units from Gauss/pixel to mA/m^2 (the units for Jz in Leka and Barnes, 2003), | // To change units from Gauss/pixel to mA/m^2 (the units for Jz in Leka and Barnes, 2003), |
// one must perform the following unit conversions: | // one must perform the following unit conversions: |
// (Gauss/pix)(pix/arcsec)(arcsec/meter)(Newton/Gauss*Ampere*meter)(Ampere^2/Newton)(milliAmpere/Ampere), or |
// (Gauss)(1/arcsec)(arcsec/meter)(Newton/Gauss*Ampere*meter)(Ampere^2/Newton)(milliAmpere/Ampere), or |
// (Gauss/pix)(1/CDELT1)(RSUN_OBS/RSUN_REF)(1 T / 10^4 Gauss)(1 / 4*PI*10^-7)( 10^3 milliAmpere/Ampere), |
// (Gauss)(1/CDELT1)(RSUN_OBS/RSUN_REF)(1 T / 10^4 Gauss)(1 / 4*PI*10^-7)( 10^3 milliAmpere/Ampere), or |
|
// (Gauss)(1/CDELT1)(RSUN_OBS/RSUN_REF)(0.00010)(1/MUNAUGHT)(1000.), |
// where a Tesla is represented as a Newton/Ampere*meter. | // where a Tesla is represented as a Newton/Ampere*meter. |
// | // |
// As an order of magnitude estimate, we can assign 0.5 to CDELT1 and 722500m/arcsec to (RSUN_REF/RSUN_OBS). | // As an order of magnitude estimate, we can assign 0.5 to CDELT1 and 722500m/arcsec to (RSUN_REF/RSUN_OBS). |
Line 497 int computeBzderivative(float *bz, int * |
|
Line 456 int computeBzderivative(float *bz, int * |
|
// jz * (35.0) | // jz * (35.0) |
// | // |
// The units of total unsigned vertical current (us_i) are simply in A. In this case, we would have the following: | // The units of total unsigned vertical current (us_i) are simply in A. In this case, we would have the following: |
// (Gauss/pix)(1/CDELT1)(RSUN_OBS/RSUN_REF)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS)(RSUN_REF/RSUN_OBS)(1000.) |
// (Gauss/pix)(1/CDELT1)(RSUN_OBS/RSUN_REF)(0.00010)(1/MUNAUGHT)(CDELT1)(CDELT1)(RSUN_REF/RSUN_OBS)(RSUN_REF/RSUN_OBS) |
// =(Gauss/pix)(1/CDELT1)(0.0010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS)(1000.) |
// = (Gauss/pix)(0.00010)(1/MUNAUGHT)(CDELT1)(RSUN_REF/RSUN_OBS) |
// =(Gauss/pix)(1/0.5)(10^-4)(4*PI*10^7)(722500)(1000.) |
|
// =(Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS)(1000.) |
|
| |
int computeJz(float *bx, float *by, int *dims, float *jz, | int computeJz(float *bx, float *by, int *dims, float *jz, |
float *mean_jz_ptr, float *us_i_ptr, int *mask, int *bitmask, |
int *mask, int *bitmask, |
float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery) | float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery) |
| |
| |
Line 514 int computeJz(float *bx, float *by, int |
|
Line 471 int computeJz(float *bx, float *by, int |
|
int i, j, count_mask=0; | int i, j, count_mask=0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
|
|
*mean_jz_ptr = 0.0; |
|
float curl=0.0, us_i=0.0,test_perimeter=0.0,mean_curl=0.0; | float curl=0.0, us_i=0.0,test_perimeter=0.0,mean_curl=0.0; |
| |
| |
Line 574 int computeJz(float *bx, float *by, int |
|
Line 529 int computeJz(float *bx, float *by, int |
|
{ | { |
for (j = 0; j <= ny-1; j++) | for (j = 0; j <= ny-1; j++) |
{ | { |
|
/* calculate jz at all points */ |
|
jz[j * nx + i] = (derx[j * nx + i]-dery[j * nx + i]); /* jz is in units of Gauss/pix */ |
|
count_mask++; |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/*===========================================*/ |
|
|
|
/* Example function 9: Compute quantities on smoothed Jz array */ |
|
|
|
// All of the subsequent functions, including this one, use a smoothed Jz array. The smoothing is performed by Jesper's |
|
// fresize routines. These routines are located at /cvs/JSOC/proj/libs/interpolate. A Gaussian with a FWHM of 4 pixels |
|
// and truncation width of 12 pixels is used to smooth the array; however, a quick analysis shows that the mean values |
|
// of qualities like Jz and helicity do not change much as a result of smoothing. The smoothed array will, of course, |
|
// give a lower total Jz as the stron field pixels have been smoothed out to neighboring weaker field pixels. |
|
|
|
int computeJzsmooth(float *bx, float *by, int *dims, float *jz_smooth, |
|
float *mean_jz_ptr, float *us_i_ptr, int *mask, int *bitmask, |
|
float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery) |
|
|
|
{ |
|
|
|
int nx = dims[0], ny = dims[1]; |
|
int i, j, count_mask=0; |
|
|
|
if (nx <= 0 || ny <= 0) return 1; |
|
|
|
*mean_jz_ptr = 0.0; |
|
float curl=0.0, us_i=0.0,test_perimeter=0.0,mean_curl=0.0; |
|
|
|
|
|
/* At this point, use the smoothed Jz array with a Gaussian (FWHM of 4 pix and truncation width of 12 pixels) but keep the original array dimensions*/ |
|
for (i = 0; i <= nx-1; i++) |
|
{ |
|
for (j = 0; j <= ny-1; j++) |
|
{ |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
if isnan(derx[j * nx + i]) continue; | if isnan(derx[j * nx + i]) continue; |
if isnan(dery[j * nx + i]) continue; | if isnan(dery[j * nx + i]) continue; |
curl += (derx[j * nx + i]-dery[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref)*(0.00010)*(1/MUNAUGHT)*(1000.); /* curl is in units of mA / m^2 */ |
if isnan(jz_smooth[j * nx + i]) continue; |
us_i += fabs(derx[j * nx + i]-dery[j * nx + i])*(1/cdelt1)*(rsun_ref/rsun_obs)*(0.00010)*(1/MUNAUGHT); /* us_i is in units of A / m^2 */ |
//printf("%d,%d,%f\n",i,j,jz_smooth[j * nx + i]); |
jz[j * nx + i] = (derx[j * nx + i]-dery[j * nx + i]); /* jz is in units of Gauss/pix */ |
curl += (jz_smooth[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref)*(0.00010)*(1/MUNAUGHT)*(1000.); /* curl is in units of mA / m^2 */ |
|
us_i += fabs(jz_smooth[j * nx + i])*(cdelt1/1)*(rsun_ref/rsun_obs)*(0.00010)*(1/MUNAUGHT); /* us_i is in units of A */ |
count_mask++; | count_mask++; |
} | } |
} | } |
| |
|
/* Calculate mean vertical current density (mean_curl) and total unsigned vertical current (us_i) using smoothed Jz array and continue conditions above */ |
mean_curl = (curl/count_mask); | mean_curl = (curl/count_mask); |
printf("mean_curl=%f\n",mean_curl); | printf("mean_curl=%f\n",mean_curl); |
printf("cdelt1, what is it?=%f\n",cdelt1); | printf("cdelt1, what is it?=%f\n",cdelt1); |
Line 594 int computeJz(float *bx, float *by, int |
|
Line 590 int computeJz(float *bx, float *by, int |
|
| |
} | } |
| |
|
|
/*===========================================*/ | /*===========================================*/ |
/* Example function 9: Twist Parameter, alpha */ |
|
| |
// The twist parameter, alpha, is defined as alpha = Jz/Bz and the units are in 1/Mm |
/* Example function 10: Twist Parameter, alpha */ |
|
|
|
// The twist parameter, alpha, is defined as alpha = Jz/Bz. In this case, the calculation |
|
// for alpha is calculated in the following way (different from Leka and Barnes' approach): |
|
|
|
// (sum of all positive Bz + abs(sum of all negative Bz)) = avg Bz |
|
// (abs(sum of all Jz at positive Bz) + abs(sum of all Jz at negative Bz)) = avg Jz |
|
// avg alpha = avg Jz / avg Bz |
|
|
|
// The sign is assigned as follows: |
|
// If the sum of all Bz is greater than 0, then evaluate the sum of Jz at the positive Bz pixels. |
|
// If this value is > 0, then alpha is > 0. |
|
// If this value is < 0, then alpha is <0. |
|
// |
|
// If the sum of all Bz is less than 0, then evaluate the sum of Jz at the negative Bz pixels. |
|
// If this value is > 0, then alpha is < 0. |
|
// If this value is < 0, then alpha is > 0. |
|
|
|
// The units of alpha are in 1/Mm |
// The units of Jz are in Gauss/pix; the units of Bz are in Gauss. | // The units of Jz are in Gauss/pix; the units of Bz are in Gauss. |
// | // |
// Therefore, the units of Jz/Bz = (Gauss/pix)(1/Gauss)(pix/arcsec)(arsec/meter)(meter/Mm), or | // Therefore, the units of Jz/Bz = (Gauss/pix)(1/Gauss)(pix/arcsec)(arsec/meter)(meter/Mm), or |
// = (Gauss/pix)(1/Gauss)(1/CDELT1)(RSUN_OBS/RSUN_REF)(10^6) | // = (Gauss/pix)(1/Gauss)(1/CDELT1)(RSUN_OBS/RSUN_REF)(10^6) |
// = 1/Mm | // = 1/Mm |
| |
int computeAlpha(float *bz, int *dims, float *jz, float *mean_alpha_ptr, int *mask, int *bitmask, |
int computeAlpha(float *bz, int *dims, float *jz_smooth, float *mean_alpha_ptr, int *mask, int *bitmask, |
float cdelt1, double rsun_ref, double rsun_obs) | float cdelt1, double rsun_ref, double rsun_obs) |
|
|
{ | { |
int nx = dims[0], ny = dims[1]; | int nx = dims[0], ny = dims[1]; |
int i, j, count_mask=0; |
int i, j=0; |
| |
if (nx <= 0 || ny <= 0) return 1; | if (nx <= 0 || ny <= 0) return 1; |
| |
*mean_alpha_ptr = 0.0; | *mean_alpha_ptr = 0.0; |
float aa, bb, cc, bznew, alpha2, sum=0.0; |
float aa, bb, cc, bznew, alpha2, sum1, sum2, sum3, sum4, sum, sum5, sum6=0.0; |
| |
for (i = 1; i < nx-1; i++) | for (i = 1; i < nx-1; i++) |
{ | { |
for (j = 1; j < ny-1; j++) | for (j = 1; j < ny-1; j++) |
{ | { |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
if isnan(jz[j * nx + i]) continue; |
if isnan(jz_smooth[j * nx + i]) continue; |
if isnan(bz[j * nx + i]) continue; | if isnan(bz[j * nx + i]) continue; |
if (bz[j * nx + i] == 0.0) continue; | if (bz[j * nx + i] == 0.0) continue; |
sum += (jz[j * nx + i] / bz[j * nx + i])*((1/cdelt1)*(rsun_obs/rsun_ref)*(1000000.)) ; /* the units for (jz/bz) are 1/Mm */ |
if (bz[j * nx + i] > 0) sum1 += ( bz[j * nx + i]); |
count_mask++; |
if (bz[j * nx + i] <= 0) sum2 += ( bz[j * nx + i]); |
|
if (bz[j * nx + i] > 0) sum3 += ( jz_smooth[j * nx + i]); |
|
if (bz[j * nx + i] <= 0) sum4 += ( jz_smooth[j * nx + i]); |
|
sum5 += bz[j * nx + i]; |
} | } |
} | } |
| |
printf("cdelt1=%f,rsun_ref=%f,rsun_obs=%f\n",cdelt1,rsun_ref,rsun_obs); |
sum = (((fabs(sum3))+(fabs(sum4)))/((fabs(sum2))+sum1))*((1/cdelt1)*(rsun_obs/rsun_ref)*(1000000.)) ; /* the units for (jz/bz) are 1/Mm */ |
printf("count_mask=%d\n",count_mask); |
|
printf("sum=%f\n",sum); |
/* Determine the sign of alpha */ |
*mean_alpha_ptr = sum/count_mask; /* Units are 1/Mm */ |
if ((sum5 > 0) && (sum3 > 0)) sum=sum; |
|
if ((sum5 > 0) && (sum3 <= 0)) sum=-sum; |
|
if ((sum5 < 0) && (sum4 <= 0)) sum=sum; |
|
if ((sum5 < 0) && (sum4 > 0)) sum=-sum; |
|
|
|
*mean_alpha_ptr = sum; /* Units are 1/Mm */ |
return 0; | return 0; |
} | } |
| |
/*===========================================*/ | /*===========================================*/ |
/* Example function 10: Helicity (mean current helicty, mean unsigned current helicity, and mean absolute current helicity) */ |
/* Example function 11: Helicity (mean current helicty, mean unsigned current helicity, and mean absolute current helicity) */ |
| |
// The current helicity is defined as Bz*Jz and the units are G^2 / m | // The current helicity is defined as Bz*Jz and the units are G^2 / m |
// The units of Jz are in G/pix; the units of Bz are in G. | // The units of Jz are in G/pix; the units of Bz are in G. |
Line 646 int computeAlpha(float *bz, int *dims, f |
|
Line 667 int computeAlpha(float *bz, int *dims, f |
|
// = G^2 / m. | // = G^2 / m. |
| |
| |
int computeHelicity(float *bz, int *dims, float *jz, float *mean_ih_ptr, float *total_us_ih_ptr, |
int computeHelicity(float *bz, int *dims, float *jz_smooth, float *mean_ih_ptr, float *total_us_ih_ptr, |
float *total_abs_ih_ptr, int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) | float *total_abs_ih_ptr, int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) |
| |
{ | { |
Line 659 int computeHelicity(float *bz, int *dims |
|
Line 680 int computeHelicity(float *bz, int *dims |
|
*mean_ih_ptr = 0.0; | *mean_ih_ptr = 0.0; |
float sum=0.0, sum2=0.0; | float sum=0.0, sum2=0.0; |
| |
for (j = 0; j < ny; j++) |
|
{ |
|
for (i = 0; i < nx; i++) | for (i = 0; i < nx; i++) |
{ | { |
|
for (j = 0; j < ny; j++) |
|
{ |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
if isnan(jz[j * nx + i]) continue; |
if isnan(jz_smooth[j * nx + i]) continue; |
if isnan(bz[j * nx + i]) continue; | if isnan(bz[j * nx + i]) continue; |
if (bz[j * nx + i] == 0.0) continue; | if (bz[j * nx + i] == 0.0) continue; |
if (jz[j * nx + i] == 0.0) continue; |
if (jz_smooth[j * nx + i] == 0.0) continue; |
sum += (jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); |
sum += (jz_smooth[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); |
sum2 += fabs(jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); |
sum2 += fabs(jz_smooth[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); |
count_mask++; | count_mask++; |
} | } |
} | } |
Line 684 int computeHelicity(float *bz, int *dims |
|
Line 705 int computeHelicity(float *bz, int *dims |
|
} | } |
| |
/*===========================================*/ | /*===========================================*/ |
/* Example function 11: Sum of Absolute Value per polarity */ |
/* Example function 12: Sum of Absolute Value per polarity */ |
| |
// The Sum of the Absolute Value per polarity is defined as the following: | // The Sum of the Absolute Value per polarity is defined as the following: |
// fabs(sum(jz gt 0)) + fabs(sum(jz lt 0)) and the units are in Amperes. | // fabs(sum(jz gt 0)) + fabs(sum(jz lt 0)) and the units are in Amperes. |
Line 692 int computeHelicity(float *bz, int *dims |
|
Line 713 int computeHelicity(float *bz, int *dims |
|
// Jz = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS)(RSUN_REF/RSUN_OBS)(RSUN_OBS/RSUN_REF), | // Jz = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS)(RSUN_REF/RSUN_OBS)(RSUN_OBS/RSUN_REF), |
// = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS) | // = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS) |
| |
int computeSumAbsPerPolarity(float *bz, float *jz, int *dims, float *totaljzptr, |
int computeSumAbsPerPolarity(float *bz, float *jz_smooth, int *dims, float *totaljzptr, |
int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) | int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) |
| |
{ | { |
Line 710 int computeSumAbsPerPolarity(float *bz, |
|
Line 731 int computeSumAbsPerPolarity(float *bz, |
|
{ | { |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; | if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
if isnan(bz[j * nx + i]) continue; | if isnan(bz[j * nx + i]) continue; |
if (bz[j * nx + i] > 0) sum1 += ( jz[j * nx + i])*(1/cdelt1)*(0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs); |
if (bz[j * nx + i] > 0) sum1 += ( jz_smooth[j * nx + i])*(1/cdelt1)*(0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs); |
if (bz[j * nx + i] <= 0) sum2 += ( jz[j * nx + i])*(1/cdelt1)*(0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs); |
if (bz[j * nx + i] <= 0) sum2 += ( jz_smooth[j * nx + i])*(1/cdelt1)*(0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs); |
} | } |
} | } |
| |
Line 720 int computeSumAbsPerPolarity(float *bz, |
|
Line 741 int computeSumAbsPerPolarity(float *bz, |
|
} | } |
| |
/*===========================================*/ | /*===========================================*/ |
/* Example function 12: Mean photospheric excess magnetic energy and total photospheric excess magnetic energy density */ |
/* Example function 13: Mean photospheric excess magnetic energy and total photospheric excess magnetic energy density */ |
// The units for magnetic energy density in cgs are ergs per cubic centimeter. The formula B^2/8*PI integrated over all space, dV | // The units for magnetic energy density in cgs are ergs per cubic centimeter. The formula B^2/8*PI integrated over all space, dV |
// automatically yields erg per cubic centimeter for an input B in Gauss. | // automatically yields erg per cubic centimeter for an input B in Gauss. |
// | // |
Line 763 int computeFreeEnergy(float *bx, float * |
|
Line 784 int computeFreeEnergy(float *bx, float * |
|
} | } |
| |
/*===========================================*/ | /*===========================================*/ |
/* Example function 13: Mean 3D shear angle, area with shear greater than 45, mean horizontal shear angle, area with horizontal shear angle greater than 45 */ |
/* Example function 14: Mean 3D shear angle, area with shear greater than 45, mean horizontal shear angle, area with horizontal shear angle greater than 45 */ |
| |
int computeShearAngle(float *bx, float *by, float *bz, float *bpx, float *bpy, float *bpz, int *dims, | int computeShearAngle(float *bx, float *by, float *bz, float *bpx, float *bpy, float *bpz, int *dims, |
float *meanshear_angleptr, float *area_w_shear_gt_45ptr, | float *meanshear_angleptr, float *area_w_shear_gt_45ptr, |