## Error Analysis

by Monica Bobra
In this document, I derive analytical functions for the error in each active region parameter using formal error propagation. It is important to note that the error formulae below assume that (i) all the variables are linearly independent, and (ii) the relative errors are small. And neither of those assumptions are true. But we are making them. Moving on to the derivations:
$1 \quad \Phi=\sum_{i}\left|B_{z_{i}}\right| d A$
$\Phi$ is a sum of all pixels; therefore, the error in $\Phi$ is simply: $(\delta \Phi)^{2}=\sum_{i}\left(\delta B_{z_{i}}\right)^{2} d A^{2}$.
$2 \quad \bar{\gamma}=\frac{1}{N} \sum_{i} \arctan \left(\frac{B_{h_{i}}}{B_{z_{i}}}\right)$
The error in $\gamma$ per pixel, $(i, j)$, is as follows:
$(\delta \gamma)^{2}=\left(\frac{\partial \gamma}{\partial B_{h}} \delta B_{h}\right)^{2}+\left(\frac{\partial \gamma}{\partial B_{z}} \delta B_{z}\right)^{2}$.
The partial derivatives per pixel, $(i, j)$, are as follows:
$\frac{\partial \gamma}{\partial B_{h}}=\frac{1}{\left[1+\left(\frac{B_{h}}{B_{z}}\right)^{2}\right]_{z}}$ and $\frac{\partial \gamma}{\partial B_{z}}=-\frac{B_{h}}{\left[1+\left(\frac{B_{h}}{B_{z}}\right)^{2}\right] B_{z}{ }^{2}}$.
Therefore, the error in $\gamma$ per pixel, $(i, j)$, is simply:
$(\delta \gamma)^{2}=\left(\frac{1}{\left[1+\left(\frac{B_{h}}{B_{z}}\right)^{2}\right]_{B_{z}}} \delta B_{h}\right)^{2}+\left(\frac{B_{h}}{\left[1+\left(\frac{B_{h}}{B_{z}}\right)^{2}\right] B_{z}{ }^{2}} \delta B_{z}\right)^{2}=\left(\frac{1}{1+\left(\frac{B_{h}}{B_{z}}\right)^{2}}\right)^{2}\left[\left(\frac{\delta B_{h}}{B_{z}}\right)^{2}+\left(\frac{B_{h} \delta B_{z}}{B_{z}{ }^{2}}\right)^{2}\right]$.
We report the mean value of $\gamma$, which means we must also determine the error in $\bar{\gamma}$ :
$\bar{\gamma}=\frac{1}{N} \sum_{i} \gamma_{i}$, where N represents the number of pixels. Therefore, the error in $\bar{\gamma}$ is:
$(\delta \bar{\gamma})^{2}=\frac{1}{N^{2}} \sum_{i}\left(\delta \gamma_{i}\right)^{2}$.
Additionally, the $\delta B_{h}$ array must be determined. We can calculate $\delta B_{h}$ per pixel, $(i, j)$, as follows:
$\left(\delta B_{h}\right)^{2}=\frac{\left(B_{x} \delta B_{x}\right)^{2}+\left(B_{y} \delta B_{y}\right)^{2}}{B_{h}{ }^{2}}$.
$3 \overline{\left|\nabla B_{t}\right|}=\frac{1}{N} \sum_{i} \sqrt{\left(\frac{\partial B_{t_{i}}}{\partial x}\right)^{2}+\left(\frac{\partial B_{t_{i}}}{\partial y}\right)^{2}}$
There are two approaches one can take to calculate $\delta\left|\nabla B_{t}\right|$ : calculate the error terms assuming (i) an analytical form for the derivative, e.g. $\frac{\partial B_{t}}{\partial y}$, or (ii) a numerical form, e.g. $\frac{\partial B_{t}}{\partial y}=0.5 *(\mathrm{Bt}[\mathrm{i}, \mathrm{j}+1]$

- Bt [i,j-1]). I am going to go with the numerical form.

Using a simple finite difference method, the derivatives are defined as follows:
$\frac{\partial B_{t}}{\partial y}=0.5 *(\mathrm{Bx}[i, j+1]-\mathrm{Bx}[\mathrm{i}, \mathrm{j}-1])$ and $\frac{\partial B_{t}}{\partial x}=0.5 *(\mathrm{Bt}[i+1, j]-\mathrm{Bt}[i-1, j])$.
Therefore, the gradient at one position $(i, j)$ is defined as follows:
$|\nabla \mathrm{Bt}[\mathrm{i}, \mathrm{j}]|=\sqrt{0.25 *(\mathrm{Bt}[i+1, j]-\operatorname{Bt}[i-1, j])^{2}+0.25 *(\mathrm{Bt}[\mathrm{i}, \mathrm{j}+1]-\mathrm{Bt}[\mathrm{i}, \mathrm{j}-1])^{2}}$
The error in in $\left|\nabla B_{t}\right|$ is as follows:

$$
\begin{gather*}
(\delta|\nabla \mathrm{Bt}[\mathrm{i}, \mathrm{j}]|)^{2}=\left(\frac{\partial \nabla B_{t}}{\partial \mathrm{Bt}[\mathrm{i}, \mathrm{j}+1]} \delta \mathrm{Bt}[\mathrm{i}, \mathrm{j}+1]\right)^{2}+\left(\frac{\partial \nabla B_{t}}{\partial \mathrm{Bt}[\mathrm{i}, \mathrm{j}-1]} \delta \mathrm{Bt}[\mathrm{i}, \mathrm{j}-1]\right)^{2}+ \\
\left(\frac{\partial \nabla B_{t}}{\partial \mathrm{Bt}[\mathrm{i}+1, \mathrm{j}]} \delta \mathrm{Bt}[\mathrm{i}+1, \mathrm{j}]\right)^{2}+\left(\frac{\partial \nabla B_{t}}{\partial \mathrm{Bt}[\mathrm{i}-1, \mathrm{j}]} \delta \mathrm{Bt}[\mathrm{i}-1, \mathrm{j}]\right)^{2} \tag{1}
\end{gather*}
$$

Let's evaluate the first term of the equation above (we'll define this as TERM1):
$\left(\frac{\partial\left|\nabla B_{t}\right|}{\partial \mathrm{Bx}[\mathrm{i}, \mathrm{j}+1]} \delta \mathrm{Bx}[\mathrm{i}, \mathrm{j}+1]\right)^{2}=\left(\frac{\mathrm{Bt}[\mathrm{i}, \mathrm{j}+1]-\mathrm{Bt}[\mathrm{i}, \mathrm{j}-1]}{4 \sqrt{0.25 *(\mathrm{Bt}[\mathrm{i}+1, \mathrm{j}]-\mathrm{Bt}[\mathrm{i}-1, j])^{2}+0.25 *(\mathrm{Bt}[\mathrm{i}, \mathrm{j}+1]-\mathrm{Bt}[\mathrm{i}, \mathrm{j}-1])^{2}}} \delta \mathrm{Bx}[\mathrm{i}, j+1]\right)^{2}$.
And here are the subsequent terms. TERM2:

$$
\left(\frac{\partial\left|\nabla B_{t}\right|}{\partial \mathrm{Bx}[\mathrm{i}, \mathrm{j}-1]} \delta \mathrm{Bx}[\mathrm{i}, \mathrm{j}-1]\right)^{2}=\left(\frac{-\mathrm{Bt}[\mathrm{i}, \mathrm{j}+1]+\mathrm{Bt}[\mathrm{i}, \mathrm{j}-1]}{4 \sqrt{0.25 *(\mathrm{Bt}[\mathrm{i}+1, \mathrm{j}]-\mathrm{Bt}[\mathrm{i}-1, \mathrm{j}])^{2}+0.25 *(\mathrm{Bt}[\mathrm{i}, \mathrm{j}+1]-\mathrm{Bt}[\mathrm{i}, \mathrm{j}-1])^{2}}} \delta \mathrm{Bx}[\mathrm{i}, \mathrm{j}-1]\right)^{2} .
$$

TERM3:
$\left(\frac{\partial\left|\nabla B_{t}\right|}{\partial \mathrm{Bx}[\mathrm{i}+1, \mathrm{j}]} \delta \mathrm{Bx}[\mathrm{i}+1, \mathrm{j}]\right)^{2}=\left(\frac{\mathrm{Bt}[\mathrm{i}+1, \mathrm{j}]-\mathrm{Bt}[\mathrm{i}-1, \mathrm{j}]}{4 \sqrt{0.25 *(\mathrm{Bt}[\mathrm{i}+1, \mathrm{j}]-\mathrm{Bt}[\mathrm{i}-1, \mathrm{j}])^{2}+0.25 *(\mathrm{Bt}[\mathrm{i}, \mathrm{j}+1]-\mathrm{Bt}[\mathrm{i}, \mathrm{j}-1])^{2}}} \delta \mathrm{Bx}[\mathrm{i}+1, \mathrm{j}]\right)^{2}$.
TERM4:
$\left(\frac{\partial\left|\nabla B_{t}\right|}{\partial \mathrm{Bx}[\mathrm{i}-1, \mathrm{j}]} \delta \mathrm{Bx}[\mathrm{i}-1, \mathrm{j}]\right)^{2}=\left(\frac{-\mathrm{Bt}[\mathrm{i}+1, \mathrm{j}]+\mathrm{Bt}[\mathrm{i}-1, \mathrm{j}]}{4 \sqrt{0.25 *(\mathrm{Bt}[\mathrm{i}+1, \mathrm{j}]-\mathrm{Bt}[\mathrm{i}-1, \mathrm{j}])^{2}+0.25 *(\mathrm{Bt}[\mathrm{i}, \mathrm{j}+1]-\mathrm{Bt}[\mathrm{i}, \mathrm{j}-1])^{2}}} \delta \mathrm{Bx}[\mathrm{i}-1, \mathrm{j}]\right)^{2}$.
Therefore, the error in $\left|\nabla B_{t}\right|$ is as follows: $\left(\delta\left|\nabla B_{t}\right|\right)^{2}=T E R M 1+T E R M 2+T E R M 3+T E R M 4$. We report the mean value of $\left|\nabla B_{t}\right|$, which means we must also determine the error in $\left|\nabla B_{t}\right|$ :
$\overline{\left|\nabla B_{t}\right|}=\frac{1}{N} \sum_{i} \nabla B_{t_{i}}$, where N represents the number of pixels. Therefore, the error in $\overline{\left|\nabla B_{t}\right|}$ is:
$\left(\delta \overline{\left|\nabla B_{t}\right|}\right)^{2}=\frac{1}{N^{2}} \sum_{i}\left(\delta \nabla B_{t_{i}}\right)^{2}$.
The $\delta B_{t}$ array must be determined. We can calculate $\delta B_{t}$ per pixel, $(i, j)$, as follows:
$\left(\delta B_{t}\right)^{2}=\frac{\left(B_{x} \delta B_{x}\right)^{2}+\left(B_{y} \delta B_{y}\right)+\left(B_{z} \delta B_{z}\right)^{2}}{B_{t}{ }^{2}}$.
The errors in the quantities below follow similarly:
$\overline{\left|\nabla B_{h}\right|}=\frac{1}{N} \sum_{i} \sqrt{\left(\frac{\partial B_{h_{i}}}{\partial x}\right)^{2}+\left(\frac{\partial B_{h_{i}}}{\partial y}\right)^{2}}$ and $\overline{\left|\nabla B_{z}\right|}=\frac{1}{N} \sum_{i} \sqrt{\left(\frac{\partial B_{z_{i}}}{\partial x}\right)^{2}+\left(\frac{\partial B_{z_{i}}}{\partial y}\right)^{2}}$.
$4 \quad \overline{J_{z}}=\frac{1}{N} \sum_{i} J_{z_{i}}$
The error in $\overline{J_{z}}$ is as follows: $\left(\delta \overline{J_{z}}\right)^{2}=\frac{1}{N^{2}} \sum_{i}\left(\delta J_{z_{i}}\right)^{2}$.
There are two approaches one can take to calculate $\delta J_{z}$ : calculate the error terms assuming (i) an analytical form for the curl, i.e. $J_{z}=\frac{\partial B_{x}}{\partial y}-\frac{\partial B_{y}}{\partial x}$, or (ii) a numerical form for the curl, e.g. $0.5 *(B x[i, j+1]-B x[i, j-1])-0.5 *(B y[i+1, j]-B y[i-1, j])$. I am going to go with the numerical form.

Using a simple finite difference method, the derivatives are defined as follows:
$\frac{\partial B_{x}}{\partial y}=0.5 *(\mathrm{Bx}[\mathrm{i}, \mathrm{j}+1]-\mathrm{Bx}[\mathrm{i}, \mathrm{j}-1])$ and $\frac{\partial B_{y}}{\partial x}=0.5 *(\mathrm{By}[\mathrm{i}+1, \mathrm{j}]-\mathrm{By}[\mathrm{i}-1, \mathrm{j}])$.
Thus, $\mathrm{Jz}[\mathrm{i}, \mathrm{j}]=0.5 *(\mathrm{Bx}[\mathrm{i}, \mathrm{j}+1]-\mathrm{Bx}[\mathrm{i}, \mathrm{j}-1]-\mathrm{By}[\mathrm{i}+1, \mathrm{j}]+\mathrm{By}[\mathrm{i}-1, \mathrm{j}])$.
Therefore, the error in in $J_{z}$ is as follows:
$(\delta \mathrm{Jz}[\mathrm{i}, \mathrm{j}])^{2}=\frac{1}{2(\Delta x)^{2}}\left[(\delta \mathrm{Bx}[\mathrm{i}, \mathrm{j}+1])^{2}+(\delta \operatorname{Bx}[\mathrm{i}, \mathrm{j}-1])^{2}+(\delta \operatorname{Bx}[\mathrm{i}+1, \mathrm{j}])^{2}+(\delta \operatorname{Bx}[\mathrm{i}-1, \mathrm{j}])^{2}\right]$.
$5 \quad J_{z_{\text {total }}}=\sum_{i} C J_{z_{i}}$
The error in $J_{z_{\text {total }}}$ is $\left(\delta J_{z_{\text {total }}}\right)^{2}=\sum_{i} C^{2}\left(\delta J_{z_{i}}\right)^{2}$.
$6 \quad \alpha_{\text {total }}=C \frac{\sum_{i} J_{z_{i}} B_{z_{i}}}{\sum_{i} B_{z_{i}}^{2}}$
The general formula for the twist parameter, $\alpha$, is simply $\alpha=C \frac{J_{z}}{B z}$, where $C$ is a constant. We've calculated a modified version from Hagino et al., which I'm explicitly calling $\alpha_{\text {total }}$ because we are dividing sums by sums; we are not strictly taking a mean, i.e. a moment of a distribution.

First, for purposes of simplicity, let's assume that there are only two pixels and $\alpha_{\text {total }}$ is reduced to:
$\alpha_{\text {simplified }}=C \frac{J_{z_{1}} B_{z_{1}}+J_{z_{2}} B_{z_{2}}}{B_{z_{1}}^{2}+B_{z_{2}}^{2}}$.
The error in in $\alpha_{\text {simplified }}$ is as follows:
$\left(\delta \alpha_{\text {simplified }}\right)^{2}=\left(\frac{\partial \alpha_{\text {simplifice }}}{\partial J_{z_{1}}} \delta J_{z_{1}}\right)^{2}+\left(\frac{\partial \alpha_{\text {simplified }}}{\partial J_{z_{2}}} \delta J_{z_{2}}\right)^{2}+\left(\frac{\partial \alpha_{\text {simplified }}}{\partial B_{z_{1}}} \delta B_{z_{1}}\right)^{2}+\left(\frac{\partial \alpha_{\text {simplifice }}}{\partial B_{z_{2}}} \delta B_{z_{2}}\right)^{2}$.
The partial derivatives are as follows:
$\frac{\partial \alpha_{\text {simplified }}}{\partial J_{z_{1}}}=C \frac{B_{z_{1}}}{B_{z_{1}}+B_{z_{2}^{2}}}$, and similarly for $J_{z_{2}}$.
$\frac{\partial \alpha_{\text {simplified }}}{\partial B_{z_{1}}}=C\left(\frac{J_{z_{1}}}{B_{z_{1}}^{2}+B_{z_{2}}^{2}}-\frac{2 B_{z_{1}}\left(J_{z_{1}} B_{z_{1}}+J_{z_{2}} B_{z_{2}}\right)}{\left(B_{z_{1}}^{2}+B_{z_{2}}^{2}\right)^{2}}\right)$, and similarly for $B_{z_{2}}$.
Therefore, the error in $\alpha_{\text {total }}$ is simply a generalization of the error in $\alpha_{\text {simplified }}$ :
$\left.\left(\delta \alpha_{\text {total }}\right)^{2}=\sum_{i}\left[C \frac{B_{z_{i}}}{\sum_{i} B_{z_{i}}^{2}} \delta J_{z_{i}}\right]^{2}+\sum_{i}\left[C\left(\frac{J_{z_{i}}}{\sum_{i} B_{z_{i}}^{2}}-\frac{2 B_{z_{i}}\left(\sum_{i} J_{z_{i}} B_{z_{i}}\right)}{\left(\sum_{i} B_{z_{i}}^{2}\right)^{2}}\right)^{2}\right]_{z_{i}}\right]^{2}$.
$7 \quad \overline{H_{c}}=\frac{1}{N} \sum_{i} C B_{z_{i}} J_{z_{i}}$
The error in in $H_{c}$ for one pixel, $(i, j)$, is as follows:
$\left(\delta H_{c}\right)^{2}=\left(\frac{\partial H_{c}}{\partial B_{z}} \delta B_{z}\right)^{2}+\left(\frac{\partial H_{c}}{\partial J_{z}} \delta J_{z}\right)^{2}$.
$\left(\delta H_{c}\right)^{2}=\left(C J_{z} \delta B_{z}\right)^{2}+\left(C B_{z} \delta J_{z}\right)^{2}$.
We report the mean value of $H_{c}$, which means we must also determine the error in $\overline{H_{c}}$ : $\left(\delta \overline{H_{c}}\right)^{2}=\frac{1}{N^{2}} \sum_{i}\left(\delta H_{c_{i}}\right)^{2}$.
We also compute two similar quantities: $H_{c_{\text {total }}}=\sum_{i}\left|B_{z_{i}} J_{z_{i}}\right|$ and $H_{c_{a b s}}=\left|\sum_{i} B_{z_{i}} J_{z_{i}}\right|$. The same error formula applies to both of these quantities, namely:
$\left(\delta H_{c_{\text {total }}}\right)^{2}=\left(\delta H_{c_{a b s}}\right)^{2}=\sum_{i}\left(\delta H_{c_{i}}\right)^{2}$.
$8 \quad J_{z_{\text {summed }}}=C\left|\sum^{B_{z}^{+}} J_{z_{i}}\right|+C\left|\sum^{B_{z}^{-}} J_{z_{i}}\right|$
Because errors are always positive, the error in $J_{z_{\text {summed }}}$ is the same as the error in $\sum_{i} C J_{z_{i}}$.
Therefore, the error in $J_{z_{\text {summed }}}$ is simply: $\left(J_{z_{\text {summed }}}\right)^{2}=\sum_{i} C^{2}\left(\delta J_{z_{i}}\right)^{2}$.
$9 \quad \bar{\rho}=\frac{1}{N} \sum_{i} C\left(\vec{B}_{i}^{o}-\vec{B}_{i}^{p}\right)^{2}$
Since the z-component of the observed field is used to generate the potential field, $B_{z}^{o}=B_{z}^{p}$ and $\rho$ at one pixel, $(i, j)$, is reduced to: $\rho=C\left(B_{x}^{o}-B_{x}^{p}\right)^{2}+C\left(B_{y}^{o}-B_{y}^{p}\right)^{2}$. We assume no error in the potential components of the field; thus our value of $\delta \bar{\rho}$ represents a lower bound. Another
approach, which we do not take, is to assume that the order of $\delta \vec{B}^{o}=\delta \vec{B}^{p}$, which means that our value of $\delta \bar{\rho}$ would include some multiplicative factor. The error in $\rho$ at one pixel, $(i, j)$, is reduced to:
$(\delta \rho)^{2}=\left(\frac{\partial \rho}{\partial B_{x}^{o}} \delta B_{x}^{o}\right)^{2}+\left(\frac{\partial \rho}{\partial B_{y}^{o}} \delta B_{y}^{o}\right)^{2}$.
$(\delta \rho)^{2}=\left[2 C\left(B_{x}^{o}-B_{x}^{p}\right) \delta B_{x}^{o}\right]^{2}+\left[2 C\left(B_{y}^{o}-B_{y}^{p}\right) \delta B_{y}^{o}\right]^{2}$.
We report the mean value of $\rho$, which means we must also determine the error in $\bar{\rho}$ : $(\delta \bar{\rho})^{2}=\frac{1}{N^{2}} \sum_{i} C^{2}\left(\delta \rho_{i}\right)^{2}$.
$10 \quad \rho_{\text {total }}=\sum_{i}\left(\vec{B}_{i}^{o}-\vec{B}_{i}^{p}\right)^{2} d A^{2}$
Following from the section above, the error in $\rho_{\text {total }}$ is:
$\left(\delta \rho_{\text {total }}\right)^{2}=\sum_{i}\left[2\left(B_{x_{i}}^{o}-B_{x_{i}}^{p}\right) \delta B_{x_{i}}^{o} d A\right]^{2}+\sum_{i}\left[2\left(B_{y_{i}}^{o}-B_{y_{i}}^{p}\right) \delta B_{y_{i}}^{o} d A\right]^{2}$.
$11 \quad \bar{\chi}=\frac{1}{N} \sum_{i} \arccos \left(\frac{\vec{B}_{i}^{o} \cdot \vec{B}_{i}^{p}}{\left|B_{i}^{o}\right|\left|B_{i}^{p}\right|}\right)$
$\chi$ at one pixel, $(i, j): \chi=\arccos \left(\frac{B_{x}^{o} B_{x}^{p}+B_{y}^{o} B_{y}^{p}+B_{z}^{o} B_{z}^{p}}{\sqrt{B_{x}^{o 2}+B_{y}^{o 2}+B_{z}^{o}} \sqrt{B_{x}^{p^{2}}+B_{y}^{p 2}+B_{z}^{p^{2}}}}\right)$.
Since $\delta B_{x}^{p}=\delta B_{y}^{p}=\delta B_{z}^{p}=0$, the error in $\chi$ is as follows:
$(\delta \chi)^{2}=\left(\frac{\partial \rho}{\partial B_{x}^{o}} \delta B_{x}^{o}\right)^{2}+\left(\frac{\partial \rho}{\partial B_{y}^{o}} \delta B_{y}^{o}\right)^{2}+\left(\frac{\partial \rho}{\partial B_{z}^{o}} \delta B_{z}^{o}\right)^{2}$.
Let's compute each term:
TERM1 $\equiv \frac{\partial \rho}{\partial B_{x}^{o}} \delta B_{x}^{o}=\frac{B_{x}^{o} B_{y}^{o} B_{y}^{p}-B_{y}^{o 2} B_{x}^{p}+B_{z}^{o}\left(B_{x}^{o} B_{z}^{p}-B_{z}^{o} B_{x}^{p}\right)}{\left(B_{x}^{o 2}+B_{y}^{o}+B_{z}^{o 2}\right)^{3 / 2} \sqrt{B_{x}^{p}+B_{y}^{p}+B_{z}^{p}} \sqrt{1-\frac{\left(B_{x}^{o} B_{x}^{p}+B_{y}^{o} B_{y}^{p}+B_{z}^{o} B_{z}^{p}\right)^{2}}{\left(B_{x}^{o}+B_{y}^{o 2}+B_{z}^{o}\right)\left(B_{x}^{p 2}+B_{y}^{p 2}+B_{z}^{p} z^{2}\right)}}} \delta B_{x}^{o}$.
TERM2 $\equiv \frac{\partial \rho}{\partial B_{y}^{o}} \delta B_{y}^{o}=-\frac{B_{x}^{o 2} B_{y}^{p}-B_{x}^{o} B_{y}^{o} B_{x}^{p}+B_{z}^{o}\left(B_{z}^{o} B_{y}^{p}-B_{y}^{o} B_{z}^{p}\right)}{\left(B_{x}^{o 2}+B_{y}^{o{ }^{2}}+B_{z}^{o}\right)^{3 / 2} \sqrt{B_{x}^{p 2}+B_{y}^{p 2}+B_{z}^{p 2}} \sqrt{1-\frac{\left(B_{x}^{o} B_{x}^{p}+B_{y}^{o} B_{y}^{p}+B_{z}^{o} B_{z}^{p}\right)^{2}}{\left(B_{x}^{o}+B_{y}^{o}+B_{z}^{o}\right)\left(B_{x}^{p}+B_{y}^{p}+B_{z}^{p}\right)}}} \delta B_{y}^{o}$.

Therefore, $(\delta \chi)^{2}=T E R M 1^{2}+T E R M 2^{2}+T E R M 3^{2}$. We report the mean value of $\chi$, which means we must also determine the error in $\bar{\chi}$ :
$(\delta \bar{\chi})^{2}=\frac{1}{N^{2}} \sum_{i}\left(\delta \chi_{i}\right)^{2}$.

