JSOC Data Record Management System

Rasmus Munk Larsen
W.W. Hansen Experimental Physics Laboratory, Annex A210
Stanford University, CA 94305-4085
e-mail: rmunk@quake.stanford.edu

October 17, 2005

Contents

1

JSOC catalog organization

1.1 The JSOC data series
1.2 The JSOC datarecord
1.2.1 Keywords o oL e
1.2.2 Links o e e
1.2.3 Datasegments e
1.3 The JSOC storage unit e
1.4 Naming L
Data series specification
2.1 Global series information
2.2 Keywords e
2.3 Links.
2.4 Datasegments e e e
2.5 JSOC Series Definition, Example 1 oo
Database representation of JSOC data series
3.1 Global tables e
3.2 Series specific tables oL
3.3 Table schemas and SQL code
3.3.1 Global tables
3.3.2 Series specific tables L e
JSOC pipeline architecture
4.1 JSOC pipeline sessions
4.2 Concurrency and data integrity oL L oL

JSOC User API

5.1 Function calls and their semantics
B5.1.1 Session e
5.1.2 Records e e
5.1.3 Keywordso e
5.1.4 Links e
5.1.5 Data Segments

5.2 Language bindings L
5.2.1 Chindings
5.2.2 Fortran bindings oL L
5.2.3 IDL bindings
5.2.4 Matlab bindings L

JSOC Internal functions

A1 JSOC API types . . . o o o e

A.2 JSOC environment functions e

A.3 JSOC series functions e

A.4 JSOC record functions e

A5 JSOC keyword functions L

A.6 JSOC link functions e

A.7 JSOC data segment functions Lo

O O O U xR

B JSOC Database Interface Layer (DIL) 33

B.1 DIL initialization and connect functions L. 33
B.2 DIL data manipulation functionso Lo o 33
B.3 DIL column types and query result types Lo 34
B.4 DIL query functions e 34
B.5 DIL query result functions oL 35
B.6 DIL transaction functionso 35
B.7 DIL sequence functions Lo 35
B.8 DIL type conversion functions Lo 35
B.9 Example program Lo e 36
C Acronyms 38

1 JSOC catalog organization

In the following we describe the logical organization of the JSOC Data Record Management System
(DRMS), also referred to as the JSOC catalog below, and define a number of terms used to describe
data in the JSOC at various levels of abstraction.

1.1 The JSOC data series

Each basic sequence of like data objects, typically “images” or other binary data along with asso-
ciated meta-data, is called a data series. A dataseries consists of a sequence of data records. Each
datarecord is the data for one step in “time”. Most but certainly not all dataseries are sequences in
time. They can be in principle any list of data objects.

1.2 The JSOC data record

A data record is the basic ”atomic unit” of a dataseries, or more precisely: The smallest unit that
will be individually registered and available for export from a data series in the JSOC catalog. Most
(if not all) access to the JSOC archive by both pipeline processing modules and external data export
services will be in terms of data records. In other words, what we in informally call the “JSOC
catalog” is first an foremost a data record catalog.

Datarecords are each associated with a record number within their dataseries. The record number
is an ordinal index number assigned internally by the JSOC to each new record being created. It
increments by one for every new record, and so maps to record creation order. The series name and
record number together uniquely identifies the data record within the JSOC catalog.

All data records belonging to the same data series have identical logical structure, meaning that
they have the same keywords, links, and data segments. These terms will be defined in more detail
below. Keywords and links will also be referred to as meta-data.

The JSOC Application Programming Interface (API) will provide a set of functions, with bindings
to host languages including C, FORTRAN, IDL, and maybe MATLAB, that allow programs to
connect to the JSOC environment and retrieve and manipulate data records. The API will contain
groups of functions that

e create, read or update data records,

e query the JSOC catalog database to retrieve data records whose keywords satisfy a given
condition,

e get and set the contents of keywords, links and data segments,

e create new or modify existing data series.

1.2.1 Keywords

A data record contains zero or more (typically many) named keywords that each map to a value
of a simple type such as integer, float or string associated with the record. Keywords are often
used to store meta-data describing properties, history and/or context of the main image/observable
data stored in the record’s data segments. This is a concept familiar from standard file-based data
formats, such as FITS, where the FITS header keywords would correspond to the JSOC keywords
and the primary binary arrays or tables would correspond to the JSOC data segments.

In the JSOC catalog keywords values will be stored in database tables separate from the files
holding the data segments. This makes it possible to

e modify keyword values without having to locate, access and possibly rewrite files on disk or
tape,

e rapidly finding data records whose keywords satisfy a given condition by executing a database
query,

e rapidly extract time series of the values of keywords from all or a subset of records in a series.
This can be useful for, e.g., trend analysis or time series analysis of global properties, e.g. mean
value or other image statistics, of data products.

There will be one database table for each series containing the values of keywords and links for all
data record in the series. The values for a single data record will be contained in a single row in
that table.

Primary index

For many series a primary index associated with the principal axis (e.g. time or (lattitude, longitude))
associated with the image in the datarecord is desired. The intention is that the primary index
maps to a unique slot on the principal axis for which might exist in multiple versions of the “same
observation” (e.g. newer versions could be created to include missing data or fix a bad calibration).
Therefore the primary index does not uniquely identify a data record.

The primary index consists of one or more keyword values that are concatenated to form the full
index. [i.e. we should support queries for intervals like the existing [1000-1010] as well
as multi-dimensional primary indices, e.g. (time, lattitude, longitude) as [1000-1010,
1-20, 5-50] or something like that.] If two records have keywords values that differ on any of
the keywords comprising the primary index, they are considered different data record (w.r.t. the
primary index), otherwise they are considered only diffent versions of the same data record (w.r.t.
the primary index).

The default behavior of the JSOC should be to return the most recent version of a datarecord
for a given primary index. Since record numbers are assigned in order of creation the most recent
version is record with the highest record number. The primary index has two crucial uses in the

JSOC:

1. It allows users to reference data records by their primary index, which will generally have some
physical meaning (e.g. for a time series it could be the number of seconds or hours since some
epoch). This will also allow programs and scripts to step through datasets in logical (e.g. time)
order, rather than in record creation order as given by the record number which is arbitrary.

2. It allows the JSOC database system to maintain column indexes on the keywords corresponding
to the primary index of a series. This will vastly speed up queries that select sets of records
based on the primary index (possibly in combination with other criteria), and this is probably
majority of all queries in the system.

1.2.2 Links

A data record contains zero or more named links. Links are pointers between data records and
make it possible for data records to inherit keyword values from each other, and to capture other
dependencies between them such as processing history. For example, a data record can contain links
to the data records that were used in creating it, such as a dopplergram data record pointing to the
filtergrams from which is was created. Links come in two varieties, static and dynamic:

e A static link points to a specific data record in the target series identified by (target series
name, record number).

e A dynamic link is represented by (target series name, primary index value) and points to the
latest version among the data records with the specified value of the primary index in the
target series. The JSOC resolves/binds the link to the record number of latest version at the
time whenever the data record containing the link is opened.

Notice: This corresponds to a simple query link. I think the most efficient way to implement it in
Oracle is using two steps. The first step creates a temporary table with just the subset of records we
are interested in. The second step extracts just the records with the highest version for each principal
index:

create or replace view tmpview as
select * from <series> where <primary index>=<value in link>
with read only;

select *

from tmpview, (select max(<record number>) as tmp_recnum
from tmpview
group by <primary index>
)

where <record number>=tmp_recnum;

This form also works for extracting the nmewest version of all records satisfying a more general
condition, just replace “}“primary index>=<value in link>” in the first step with a general query
condition.

1.2.3 Data segments

A data record contains zero or more named data segments. The data segments contain data of large
volume associated with the data record. The contents of the data segments for a given data record
is stored in files in a directory on disk (possible on tape) As described below, to make transfer and
storage of JSOC data more managable and efficient, the data segments for multiple data records
are grouped together and managed as a single storage unit. This typically gives rise to a directory
structure like

/PDS1/DU12342/hmi_levl_fd_V-34236-0000.fits
hmi_levl_fd_V-34236-0001.fitz
hmi_levl_£fd_V-34236-0002.raw
hmi_levl_£fd_V-34237-0000.fits
hmi_levl_fd_V-34237-0001.fitz
hmi_lev1l_f£fd_V-34237-0002.raw
hmi_lev1l_fd_V-34238-0000.fits
hmi_levl_£fd_V-34238-0001.fitz
hmi_levl_£fd_V-34238-0002.raw

where in this example the records are assumed to contain three segments stored in .fits, .fitz and
.raw files. In general the file name for each data segment could be of the form:

<disk>/<unit>/<series>-<record#>-<segment#>.<extension>.

The JSOC API provides a set of functions to access and manipuate the contents of the data
segments as n-dimensional arrays, hiding the underlying storage format from the user. The API
could also contain functions returning the path to files containing data segments, such that the user
can manipulate the files directly, with standard software, if she is so inclined [at her own risk].

1.3 The JSOC storage unit

The atomic unit of data that is managed by the JSOC storage system is called a storage unit. The
JSOC storage system is therefore denoted Storage Unit Management System (SUMS). Each storage
unit contains the data segment part of datarecords from a single dataseries, and corresponds to the
contents of a single directory, [possibly with subdirectories for each datarecord]. A storage
unit index (denoted DSIndex for historical reasons) is stored with each data record and identifies
the storage unit holding the data segments for the record.

A storage unit may be stored online on magnetic disk, offline e.g. on a magnetic tape in a cabinet,
or nearline on a tape in a robotic tape library. (The particular storage media is not important to
the concept). In response to a user’s request to access a particular datarecord the JSOC catalog
will identify the storage unit containing that datarecord by looking up its DSIndex. The DSIndex

JS0C Drata Series Data records for Single hmi kvl fd V data record
series humi lewl fd W

Storage Uit
= Darectory

Figure 1: Logical structure of a JSOC data series.

is an index into the SUMS internal catalog which tracks the location of each storage unit. If the
requested storage unit is not online the SUMS will allocate storage space, name a directory, and
copy the storage unit into that directory. The SUMS will report the working directory pathname to
the JSOC catalog where it is accessible to the user. All storage units are owned and managed by
the SUMS.

Storage unit are “write-once” objects and clients of SUMS can only perform two operations on
them: 1) open existing unit as read-only, 2) create new unit. Deletion or modification of storage
units will be restricted to SUMS administrative programs and will require special privileges.

The datarecords from a particular dataseries will in general be stored in many storage units. The
default size of a unit is specified when a series is created. It should be chosen based on knowledge
of the size of the data records and how they are likely to be computed, such that a storage unit
corresponds to the output of a “natural” processing batch and/or is a convenient size to handle
for data export and efficient transfer to tape (the tape archival service can probably further bundle
multiple units, if available, together in a single tar command to gain further efficiency).

One of the goals of the JSOC data model is allowing user to make a new version of a data record
when the value of one or more keywords change without having to copy the large files making up
the data segments. This is accomplished by allowing multiple data record to point to the same
storage unit. A small example will illustrate this: Consider a simple data series where records have
two keywords “seriesnum” (which is the primary index) and “x” and a single data segment “data”.
Assume that each storage unit contains a single data record. Let us consider the following sequence
of events:

[13

1. new record: create new record with recordnum=0, seriesnum=1, x=10.0, store “data” in new unit

2. keyword change: create new version of record with recordnum=1, x=10.1

3. data segment change: create new version of record with recordnum=2, store updated data in new unit
Here is what happens in each step:

e The first step creates a new entry in the DRMS database holding the keyword values. SUMS

creates a new directory and inserts a new storage unit entry unit into its database. The file
containing the data segment is stored in the new directory.

e The second step only modifies the value of a keyword and gives rise to a new entry in the
DRMS database. The data segment part is unchanged and the DSIndex refers to the data
stored in step 1.

e In the final the data segment is modified and this gives rise to new entries in both the DRMS
and SUMS databases, i.e. a new data record and a new storage unit.

The three records are all different version of the same object since they correspond to the same value
for the primary index (seriesnum). The final state of the database tables would look something like
this:

Data record table Storage unit table
recordnum | seriesnum | X DSindex DSindex | Path
0 1 10.0 0 " o /PDS/DS00000

1 1 10.1 Q / 1 /PDS/DS00001
2 1 10.1 1

[Question from Jesper Schou: Is the example above the only case where records are
allowed to point to the same storage units? Should it be allowed that records with
different primary index or even records from different series point to the same storage
unit? It sort of wreaks the whole data concept. Are there examples where it would be
really useful in a way that cannot be accomplished with links?]

1.4 Naming

[This is straight out of Phil’s document. I’'m not excited about it.]

In the MDI system dataset names were constructed as a 5-part name consisting of a project
or program name, a reduction level name, a series name, a series index number, and a version
number. The series name contained user readable indicators of the blocking of time into datasets
and standardized series numbers were referenced to a common epoch (1 January 1993, 0 UT). Thus
the dataset name for hour 0 of full disk velocity images for July 14 1996 is:

prog:mdi,level:levl.5,series:£d_V_01h[30960]

After requesting the location of that dataset by a call to a service (e.g. the "peq” program) the user
could learn that the dataset is now in the directory ” /PDS20/D6362810”. If that dataset is not used
for a few weeks its online copy will be deleted so the next time it is again requested it will be staged
to disk and will appear in another directory. But the user never needs to see the actual storage
working directory since the user refers to the data by its descriptive name. The velocity image for
say the 10th minute of that hour will be in a file (e.g. 0009.fits) in that working directory. Again
the actual file name is not seen by the user since she has used an SSSC provided API function to
open the file for the requested minute number.

The JSOC naming system is derived from the MDI system but has some key differences. The
concept of a multipart name is eliminated to reflect the MDI actual experience. A new top level
name will identify the JSOC data server as a whole to allow a common format for access to e.g. the
existing MDI data. The existing name parts simply become user viewable parts of the dataseries
name. Thus the same dataset in the example above might be:

jsoc:/mdi_fd_V_levl.5/[t_rec>=1996.07.14_00,t_rec<1996.07.14_01]
or
jsoc:/mdi_£fd_V_01h_levl.5/[sn=30960]

where the syntax here is still TBR.
When the user asks for this dataset in the JSOC system a function provided by the JSOC
catalog API will generate a list of all the datarecords in the dataset. That list will include the

working directory (storage unit) and file name and optionally slice within a file for each datarecord.
The user will not normally need to see this information since she will simply use the ”open_record”
JSOC API function call.

[I don’t formally define “dataset” anywhere, it is perhaps just a datarecord. A
“virtual dataset” can be simply a record from a series where the records only contain
a set of links and no data segments.]

2 Data series specification

Each data series in the JSOC catalog is defined in a JSOC Series Definition (JSD) file (usually a
text file with extension .jsd). The JSD contains a description of the global properties of the series,
such as its name, owners, date of creation, storatge unit size, etc. as well as a concise description of
all the keywords, links and data segments that all data records belonging to the series will contain.
The JSD is divided into 4 section, global, keywords, links, and data segments. The syntax of each
section is described below.

A new data series is added to the JSOC catalog by parsing the JSD and creating SQL code
that when executed by the JSOC catalog database server will create the necessary tables and global
table entries to represent the series described in the JSD (see section 3). This can either be done by
passing a JSD file to a command line utility

command prompt> jsoc_series —-create newseries.jsd
or by calling the functions

JSOC_Series_t *jsoc_parse_description(JSOC_Env_t *env, char *jsd)
int jsoc_create_series(JSOC_Env_t *env, JSOC_Series_t *series)

from within a process running in the JSOC environment with the text of the JSD contained in the
string argument jsd. Since the series name must be unique, the above commands will fail if a series
with the same name as specified in the JSD already exists. It is possible to update the definition of
an existing series by editing the JSD and either using the command line utility

command prompt> jsoc_series —update oldseries.jsd
or by calling the functions

JSOC_Series_t *jsoc_parse_description(JSOC_Env_t *env, char *jsd)
int jsoc_update_series(JSOC_Env_t *env, JSOC_Series_t *series)

Updating a series by adding or removing keywords or links will result in a rebuild of the database
tables holding the keyword and link values for the data records. This can be slow for series with
many existing records.

2.1 Global series information

This section contains global information about the JSOC data series, that applies to all records and
storage units belonging to the series. It takes the form:

Seriesname: <series name>
Description: <description>

Author: <author name>

Owners: <owners>

Unitsize: <storage unit size>
Retention: <default retention time>
Archive: <archive flag>
Tapegroup: <tape group>

Primary Index:

<primary keyword list>

where

<series name> is a string containing the name of the JSOC dataseries defined in this file. The
series name has to be unique, i.e. there can be no two data series in the JSOC database with
the same name.

<description> is a string containing a description of the data series.
<author name> is a string containing the name of the author who created the data series.

<owners> is a string containing a comma separated list of [Database or Unix?] usernames with
permission to write, delete and modify this series and records and storage units belonging to
it.

<storage unit size> is a non-zero integer indicating the number of data records that go into
forming a storage unit for this series.

<default retention time> is a string containing either permanent or a time interval on the form
YYMMDDHH (i.e. 100 for one day, or 1000000 for one year) [should perhaps choose more
standard syntax?] denoting the default online retention time, i.e. the time for which the
files holding the data of the data segments will be kept online. The default retention time can
be overridden on a per storage unit basis.

<archive flag> is either 0, meaning that records from this series are not archived on permanent
media, or 1 meaning that records from this series are archived to tape. If the archive flag is 0
then the <tape group> field is ignored.

<tape group> is an integer identifying the tape group to which this data series belongs. This is
used to group together data units belonging to related data series when storing them on tape.

<primary keyword list> A list of zero or more keyword names constituting the primary index of
the series. These keywords must be declared in the keyword section of the JSD for it to be
valid. If no keywords are given, the record number is implicitly used as primary index.

2.2 Keywords

The keyword section contains declarations of all keywords present in records belonging to the series.
Each keyword description consist of ”Keyword:” followed by a comma separated list of attributes
describing the keyword. Tab or newline characters are ignored. If the keyword is a simple value this
takes the following form:

Keyword: <name>, <datatype>, <scope>, <default value>, <format>, <unit>, <comment>

where
<name> is a string specifying the name of the keyword.

<scope> can take the value fixed which means that the keyword has the same value for all data
records, or <scope> can take the value variable which means that the keyword does not have
the same value for all data records.

<datatype> specifies the data type of the keyword value. The following types are recognized: char,
short, int, long, long long, float, double, datetime, timestamp and string.

<default value> is the default value assigned to this keyword. Default is zero for numerical types,
the empty string for string types and ”1970-01-01 00:00:00” for date and time types. A fixed
keyword has the default value for all records.

<format> is a format string as used by the printf family of functions for formatting an object of
type <datatype>.

10

<unit> is a string specifying the physical unit of the keyword value.
<comment> is a string describing the meaning of the keyword.

For example, to declare a keyword containing a floating point value describing velocity associated
with a data record, the keyword section would contain a line like

Keyword: "v", float, variable, 0.0f, "%12g", "m/s", "velocity", O

A keyword can also be a link pointing to a keyword in a record from a different series, hereby
making it possible for data records to inherit keyword values from each other. A link keyword has
<datatype> equal to 1ink and takes the form the form

Keyword: <name>, link, <linkname>, <target keyword>
where
<name> is a string specifying the name of the keyword.
<linkname> specifies the name of the link, which must be defined elsewhere in the same JSD.

<target keyword> specifies the name of the target from from which to get the value in the record
pointed to by the link.

For example:
Keyword: Tilt, link, HMI_ORBIT, P_Angle

This definition means that to get the value of the keyword Tilt, follow the link named HMI_ORBIT
to the data record it points to and get the value of keyword named P_Angle from that data record.
[Should we include MIN, MAX and MISSING values to conform with VO tables?]

2.3 Links

Links contain pointers from data records of the data series being defined in the JSD to other data
record. Links make it possible for data records to inherit keyword values from each other, and to
capture other dependencies between data records such as processing history. For example a data
record can contain links to the data records that were used in creating it, such as a dopplergram
data record pointing to the filtergrams from which is was created. Links come in two varieties, static
links and dynamic links, and are declared thus:

Link: <name>, <target series>, <type>
where
<name> is string giving the symbolic name of the link.

<target series> is a string containing the name of the series from which come the record pointed
to by the link.

<type> can either take the value static which indicates that the link is static, i.e. based on record
number, or <type> can type the value dynamic which indicates that the link is dynamic, i.e.
based on primary index.

A static link points to a single data record from the target series. The link must be established /bound
by specifying the record number of the record pointed to. This is done by calling the JSOC function

int jsoc_set_link_static(JSOC_DataRecord_t *record, char *linkname, int recnum)

from a process running within the JSOC environment with a pointer to the data record passed in
as the first argument.

A dynamic link points to the data record from the target series with the highest record number
for a given primary index. [If primary indices are simple integers we can use a simple
function call as above (or maybe even the same). If primary indices can be composite,
we need to be able to pass that into the function.]

11

2.4 Data segments

The data segment section describes the binary data associated with records from the series being
defined in the JSD. Each data segment is an n-dimensional array of a simple type. Various external
storage formats of the data segment arrays are available, and are specified by the <protocol> field.
The general form of a data segment description is

Data: <name>, <form>, <scope>, <datatype>, <naxis>, <axis dims>, <unit>, <protocol>

The number of fields required depends on the value of <form> and <scope>, so the following five
forms are valid

Data: <name>, generic, fixed

Data: <name>, generic, variable

Data: <name>, array, fixed, <datatype>, <naxis>, <axis dims>, <unit>, <protocol>
Data: <name>, array, variable, <datatype>, <naxis>, <axis dims>, <unit>, <protocol>
Data: <name>, array, vardim, <datatype>, <naxis>, <unit>, <protocol>

where
<name> is a string containing the name of the data segment.

<form> is either generic which means that the data segment is an unstructured file or array which
means that the data segment is a multi-dimensional array.

<scope> can take the value fixed which specifies that the contents of the data segment is the
same for all data records in the series. If <form> is generic then <scope> can take the value
variable which means that a different data segment file is associated with each record. If
<form> is array then <scope> can take the value variable which means that a different data
segment array of fixed size is associated with each record, or <scope> can take the value vardim
which means that a different data segment array of varying size but fixed dimensionality is
associated with each record.

<datatype> is the data type of the data in the data segment. It can be char, short, int, long,
long long, float, double, datetime, timestamp or string. Not all file formats support all
these data types, see discussion for <protocol> below.[SHOULD ADD FIXED LENGTH
STRINGS]

<naxis> is the number of dimensions of an array data segment array, e.g. 1 is is a vector, 2 is a
matrix, 3 is a cube etc.

<axis dims> is a comma separated list of <naxis> positive integers giving the dimensions of the
data segment array.

<unit> is the physical unit of the data segment.
<protocol> is the protocol used to store the data segments on disk. Supported protocol are:

FITS Standard FITS format. Supports all data types.

FITZ FITS format compressed losslessly with first differencing plus Rice/Golomb entropy
coding. Currently supports 8, 16 and 32 bit integer 1d and 2d arrays.

MSI Multi Scale Image format. Uses a lossless compression algorithm based on wavelet trans-
formation followed by Rice/Golomb entropy coding, storing the bitstream in resolution
progressive order. Allows lower resolution (downsampled by powers of two) versions of
the image to be extracted rapidly by simply truncating the file. Currently supports 16
bit integer 1d and 2d images with dimensions that are powers of 2.

PNG ?
JPEG 7
TIFF 7

12

MPEG ?

[probably more formats to come...]

<data segment number> is an integer between 000 and 999. Data segments are numbered
according to the order in which they occur in the JSD.

2.5 JSOC Series Definition, Example 1

Below is shown an example of a JSD defining a series named “testclass1”. The example has 8
keywords of different types (1 linked and 7 simple), 2 links (one static and one query), and 6 data
segments (3 fixed arrays for axis, two main variable data arrays and one generic segment meant for
a text file with processing log):

Global series information
Seriesname: "testclassl"

Description: "This series is for testing only."
Author: "Rasmus Munk Larsen"

Owners: "rmunk"

Unitsize: 10

Archive: 1

Retention: permanent

Tapegroup: 127

Primary Index:

Keywords

Format:

Keyword: <name>, link, <linkname>, <target keyword name>

or

Keyword: <name>, <datatype>, {fixed | variable}, <default value>, <format>, <unit>, <comment>
#

Keyword: "keywdO", link, "link1", "keywdO"

Keyword: "keywdl", char, variable, ’\0’, "%d", "unitl", "Commentl"
Keyword: "keywd2", int, variable, 0, "%d", "unit2", "Comment2"
Keyword: "keywd3", float, variable, 0.0f, "%f", "unit3", "Comment3"
Keyword: "keywd4", double, variable, 0.0, "%1f", "unit4", "Comment4"

Keyword: "keywdb", datetime, variable, "1970-01-01 00:00:00", "%-s", "unitb5", "Comment5"
Keyword: "keywd6", timestamp, variable, "19700101000000", "%-s", "unit6", "Comment6"

Keyword: "keywd7", string, variable, "", "Y-s", "unit7", "Comment7"
Links

Format:

Link: <name>, <target series>, { static | dynamic }

#

Link: "1inkO", "testclassO0", static

Link: "link1", "testclassO", dynamic

Data segments
Data: <name>, <form>, <scope>, <datatype>, <naxis>, <axis dims>, <unit>, <protocol>
#

Data: "x-axis", array, fixed, float, 1, 100, "m", fitz

Data: "y-axis", array, fixed, float, 1, 200, "m", fitz

Data: "z-axis", array, fixed, float, 1, 50, "m", fitz

Data: "pressure", array, variable, float, 3, 100, 200, 50, "kg/(s"2*m)", fitz
Data: "velocity", array, variable, float, 4, 100, 200, 50, 3, "m/s", fitz

Data: "processing log", generic, variable

13

3 Database representation of JSOC data series

[This is a modified version of what I wrote for Jim’s CDRL document, so it repeats (and
probably somtimes contradicts) some of what has been said above. It uses a different
example than the one in section 2.5]

The data making up the records and units of a data series specified in a JSD are represented
in the JSOC by a collection of database tables and records, as well as files and directories on disk
and/or tape. The information in the JSD in stored in a number of global tables, while the data
representing the values of keywords and links for each data record are stored in a single database
table specific to the series. Finally, the data representing the data segments of a record are stored in
files on disk or tape, managed by the SUMS. In the following we describe the details of these tables.

3.1 Global tables

The JSOC catalog will maintain a set of global tables that define the structure of data records
belonging to each series, and contain information shared by all record of the series, such as tape
storage group, default online retention time and whether records from the series should be archived
to tape.

An example of what these tables might look like is shown in Figure 2.

e The master_series_table contains a list of all JSOC data series with descriptions of the series,
information about when and by who they were created, in addition to information about the
storage policy for the series.

e The master_keyword_table contains a list of all keywords for all JSOC data series. Each
row in the table describes things like the name of the keyword, the data type, default output
format and physical unit of its value and whether the keyword is ”inherited” by following a
link to another data record or whether it is stored as a simple value in the ”series table”,
which is the main table holding actual the keyword values for all records belonging to it (see
below). Additional information might include whether the database should maintain an index
on this keyword value. This is done to speed up database queries with conditions involving
this keyword value.

e The master_link_table contains a list of all links for all JSOC data series. Each link has a
name and a target series to which they point, and can be either static, i.e. pointing to a specific
data record in the target series defined by (record number, version), or it can be a ”query link”.
A 7query-link” is can be represented as (link name, series name, query) tuple. The intention
of the later form is that the link can be bound/resolved dynamically by evaluating the query
condition either at creation time or when the data record is opened for reading. This can for
example be used to create a link that automatically resolves to the most recent data record
of a data series, e.g. the most recent version of a calibration table. The syntax used in query
links is TBD.

e The master_data_table contains a list of the data segments for records belonging to JSOC
data series. A data segment is described by its name, type, physical unit, dimensions and the
storage protocol used when accessing the contents of the data segment in secondary storage.

The master tables above merely describe the structure of data records belonging to data series
and are therefore reasonably small. The number of rows in these tables is proportional to the number
of data series [which is probably no more than a few hundreds, maybe a thousand.]. The
bulk of the JSOC catalog is a set of tables, one for each series, containing the actual keyword values
for all data records. In addition, a special sequence table is maintained for each series. A sequence
is a special database table type containing a counter that can be read and incremented in an atomic
operation. It is used to guarantee that unique record numbers are generated even when several
modules concurrently are creating new records belonging to the same series.

14

master_series_table:

Series Author | Created Description Archive | Tapegroup | Retention | Owner Index
hmi_fd_v Jesper | 2006-05-02 10:52:44| Doppler velocity 1 2 40000 production | T_Obs
hmi_lev0_fg| Rasmus | 2006-05-02 10:52:42| Filtergram ... 1 1 6000 production | T_Obs
testclass1 Rasmus | 2004-10-06 13:14:15| simple testclass 0 0 0 rmunk Time
master_keyword_table:

Series Keyword Type Scope Default value | Format Unit Linkname | Target Name
hmi_fd_v T_Obs datetime | variable |’1970-01-01" | "%F %T" S NULL NULL
hmi_fd_v D_Mean float variable |- "%12.5f" w/s NULL NULL
hmi_fd_v P_Angle link NULL NULL NULL NULL Orbit PANGLE
hmi_sht_v Imax int variable |’0’ "%d" NULL NULL
master_link_table:

Series Link Target_Series | Type

hmi_fd_v Orbit sdo_fds dynamic

hmi_fd_v L1 hmi_fg static

hmi_fd_v |RI1 hmi_fg static

hmi_fd_v | Caltable | hmi_dopcal | Static
master_data_table:

Series Name Protocol Type | Unit | Naxis | Axis

hmi_fd_v velocity | FITS float |m/s |2 4096, 4096

hmi_lev0_fg |intensity |FITZ short 2 4096, 4096

Figure 2: Example illustrating the structure of the global tables in the JSOC catalog.

15

hmi_fd_v:

ID T_Obs | D_Mean | .. |Orbit_ID|LI_ID DSIndex

0 - ’2008...°| 123.456 - 7 2341 123456

1 - ’2008...°| 123.456 - 7 2341 123457

2 - ’2008...°| 234.567 . 8 2361 123456
9588392 B ’2010...”| 234.567 - 48 64112361 | 123457

hmi_fd_v_seq:

1D
9588392

Figure 3: Illustration of the structure of the series specific tables for the series hmifd_v. The
main record table is named hmi_fd_v and the record number sequence counter table is named
hmi_fd_v_seq.

3.2 Series specific tables

The two tables hmi_fd v and hmi fd v_seq in Figure 3 illustrate what the main record table and
the sequence counter table for the series ”hmi_fd_v” might look like:

Each row in the table hmi_fd_v represent a data record from the series hmifd_v. The first
two columns contain record number (ID) and version which together with the series name uniquely
identifies the record within the JSOC environment. The values of simple keywords (T-Obs and
D_Mean in the example) are stored in the table along with record number (ID) and version of objects
pointed to by links. For example, the second row in the table represents data record (hmi_fd v, 1,
1) which contains a link called L1 pointing the record (hmi_fg, 2341, 1) from the hmi_fg series. For
this record the query link named Orbit has been resolved to point to the record (sdo_fds, 7, 1) from
the series sd0_fds.

Finally, the "hmi_fd_V” table contains for each record a pointer to the storage unit in which the
contents of the data segments of the record is stored. This pointer (here called ”DSIndex”) is an
index into a database table maintained by the SUMS sub-system. DSIndex can be resolved by the
SUMS to a path of a directory containing the data files of the data segments.

3.3 Table schemas and SQL code
3.3.1 Global tables

The global tables master_keyword_table, master_keyword_table, master_link_table, and mas-
ter_data_table are created once by the JSOC database administrator (DBA) with the following
SQL code:

create table mdc_master_series_table

(
series varchar (64) not null,
author varchar (64) not null,
owners varchar (64) not null,
created timestamp not null,
description text,
unitsize integer not null,

16

archive integer
tapegroup integer,
retention timestamp
primary key (series)

)

not null,

not null,

create table mdc_master_keyword_table

not null, /* Name of series. */

not null, /* Name of keyword. */

not null, /* Keyword number */

/* should be NULL for ordinary keywords. */
null, /* Data type */

null,
null,
null,
null,
null,

/*

/%

Max size of data type */

Physical unit */

null, /* Name of series. */
null, /* Name of link. */
null, /* Link number */

not null,
null, /* Simple or query */
null, /* Database query */

null,

null,
null,
null,
null,
null,
null,
null,
null,

/%
/%
/%
/%
/%
/*
/%

(
series varchar(64)
keyword varchar(64)
number integer
linkname varchar(255),
type varchar (20) not
maxsize integer not
format varchar(20) not
unit varchar (16) not
comment varchar (255) not
indexed integer not
primary key (seriesname, keywordname)

);

create table mdc_master_link_table

(
series varchar(64) not
link varchar (64) not
number integer not
target_series varchar(64)
type varchar (20) not
query varchar(255) not

binding varchar(10) not null,
comment varchar (255) not
primary key (seriesname, linkname)

);

s

create table mdc_master_data_table

(
series varchar(64) not
data varchar (64) not
number integer not
type varchar (20) not
unit varchar (16) not
naxis integer not
axis varchar (255) not
comment varchar (255) not
primary key (seriesname, dataname)

);

3.3.2 Series specific tables

/* Bind time */

Name of series. */

Name of data segment. */

Segment number */

Data type */

Physical unit */

Rank = number of dimensions */

comma separated list of axes dimensions */

We now continue with the example from Section 2.5. Below is shown the SQL code that will be
executed by parsing the JSD of Example 1:

/* Register series info in the global table. */

insert into MDC_MASTER_SERIES_TABLE values

17

(’testclassl’, ’Rasmus Munk Larsen’, ’rmunk’, now(), "This series is for testing only.", 10, 1, 127,

/* Register keywords in the global table. */
insert into MDC_MASTER_KEYWORD_TABLE values

(*testclassl’,’keywd0’, O, ’newest’, ’link’, NULL, NULL, NULL, NULL, NULL);
insert into MDC_MASTER_KEYWORD_TABLE values

(’testclassl’,’keywdl’, 1, NULL, ’char’, 1, ’%d’, ’unitl’,’commentl’, 0);
insert into MDC_MASTER_KEYWORD_TABLE values

(*testclassl’,’keywd2’, 2, NULL, ’int’, 4, ’%d’, ’unit2’,’comment2’, 1);
insert into MDC_MASTER_KEYWORD_TABLE values

(’testclassl’, ’keywd3’, 3, NULL, ’float’, 4, ’%f’, ’unit3’,’comment3’, 0);
insert into MDC_MASTER_KEYWORD_TABLE values

(’testclassl’, ’keywd4’, 4, NULL, ’double’, 8, ’%1lf’, ’unit4’,’commentd’, 0);
insert into MDC_MASTER_KEYWORD_TABLE values

(*testclassl’,’keywd5’, 5, NULL, ’datetime’, 22, ’J%-s’, ’unitb5’,’comment5’, 0);
insert into MDC_MASTER_KEYWORD_TABLE values

(’testclassl’,’keywd6’, 6, NULL, ’timestamp’, 22, ’%-s’, ’unit6’,’comment6’, 0);
insert into MDC_MASTER_KEYWORD_TABLE values

(*testclassl’,’keywd7’, 7, NULL, ’string’, 4, ’%-s’, ’unit7’,’comment7’, 0);

/* Register links in the global table. */
insert into MDC_MASTER_LINK_TABLE values

(’testclass1’,’1ink0’, 0, ’testclass0’, ’static’, ’’, ’7, ’’);
insert into MDC_MASTER_LINK_TABLE values
(’testclassl’,’newest’, 1, ’testclass0’, ’query’, ’time=(select max(time) from testclass0)’, ’creati
query

/* Register data segments in the global table. */
insert into MDC_MASTER_DATA_TABLE values
(’testclassl’,’x-axis’, 0, ’float’, 1, ’100’, ’m’, ’fitz’);
insert into MDC_MASTER_DATA_TABLE values
(*testclassl’,’y-axis’, 1, ’float’, 1, ’200’, ’'m’, ’fitz’);
insert into MDC_MASTER_DATA_TABLE values
(’testclassl’,’x-axis’, 2, ’float’, 1, ’50’, ’m’, ’fitz’);
insert into MDC_MASTER_DATA_TABLE values
(’testclassl’,’pressure’, 3, ’float’, 3, ’100, 200, 50’, ’kg/(s"2*m)’, ’fitz’);
insert into MDC_MASTER_DATA_TABLE values
(*testclassl’,’velocity’, 4, ’float’, 4, 100, 200, 50, 3’, ’m/s’, ’fitz’);

/* Create the main table to hold per-record information. */
create table testclassl

(
recnum integer not null, /* Record number */
ver integer not null, /* Record version */
linkO_recnum integer,
linkO_ver integer,
newest_recnum integer,
newest_ver integer,
keywdl "char" default ’\0’,
keywd2 integer default O,
keywd3 real default 0.0,
keywd4 double precision default 0.0,
keywd5 varchar (22) default ’1970-01-01 00:00:00°,
keywd6 varchar (22) default ’19700101000000°,
keywd7 text default ’’,

18

Pipeline hatch = atomic transaction

Figure 4: Illustration of a JSOC session.

storage_index integer not null unique, /* Index of the record in the main storage table
holding information about where the data
files are stored. */
primary key(recnum,ver)
)3
/* Create indexes explicitly requested in the series specification. */
create index keywdl_idx on testclassl(kewwdl);

/* Create an atomic counter for creating new record numbers for this series. */
create sequence testclassl_seq;

/* Insert default values as record with (recnum,ver) = (0,0). */
insert into testclassl values
(0,0,0,0,0,0,’\0’, 0, 0.0, 0.0, ’1970-01-01 00:00:007,719700101000000°, ’?);

4 JSOC pipeline architecture

4.1 JSOC pipeline sessions

Pipeline processing in the JSOC will occur in batches or session, which consist of the execution of
a sequence of modules, see Figure 4. A session is an atomic transaction in the sense that either all
or none of the data records created in the session are archived. This is achieved by controlling all
database access and creation of data records and units in a single DRMS instance (similar to the
PE process in MDI), which acts as the session master process.

The master DRMS process begins a new session by opening a connection to the Oracle database
server and issuing a BEGIN TRANSACTION command. All subsequent database operations (reading,
modifying or creating data records) performed by DRMS on behalf on client modules will take place
within a single database transaction. At the end of a successful session DRMS will issue a COMMIT
command and the changes made to the database will become visible to other users of the database.
However, all data record created or modified by a module will be immediately visible to subsequent
modules executed within the same session.

19

Pipeline client process

Analysis code
CiFortran/IDLAlatlah ey

P S |

|
|

|

|

i

|

|

|

'

i

| OperBecords | CretBeynamord, SetBerarord | CpenD ata Segprerit
: CloseFeconds | CretLind, SetLink ClogeData Segmmend
i

|

|

|

|

|

|

|

|

i

i

|

|

L

JS0C Library b

! !

Record Cache (Eeywords+Links+Data padhs)

e Tl
;
E

Data Record AllocThit Storage Unit
Management Service Gt Tt Management Service
(DRMS) Pt Tt (STUMS)
Storage mdt trarefer
Tape Archive
Service

Figure 5: Client-server architecture of JSOC pipeline.

If an error occurs or one of the client modules finishes with an abort request the DRMS will issue
a ROLLBACK command and any changes made to the database will be undone, such that to other
users the database will appear as if the session never took place.

The master DRMS process keeps track of all storage units being read and created within a session
in an in-memory table.

When an existing data record is opened for reading DRMS will query the database determine
which storage unit it belongs to and ask SUMS for a path to the directory where that unit resides
(possibly the unit has to be read from tape first). DRMS will then insert an entry in its internal
table stating that the unit storage unit is open for reading.

When a new data record is created DRMS checks its internal table to see if it has any data units
belonging to the same series open for creation which still have empty slots left. If so it assigns and
empty slot to the data record. If not it asks SUMS to allocate a new data unit for the series and
inserts an entry for it into its internal table.

In Figure 6 is an illustration of what the internal table in DRMS might look like during the
execution of an imaginary pipeline session containing four modules executed sequentially. The two
first modules read data records from the series hmi_levO_caml fg and write records to the series
hmi levl £fd_V and hmi_levl fd _V_quick respectively. The two last modules read data records from
the series hmi_levO_cam2_fg and write records to the series hmi levl fd M and hmi levl fd M_quick
respectively. It is assumed that the unit size for hmi levl fd V and hmi levl fd V_quick is 90
(would correspond to one hour of data at a 40 second cadence).

20

Example pipeline session:

Compute Compute Compute Compute
fd_v fd_V_quick fd M fd_M_quick

DRMS state during half-way through execution of "'Compute fd_V_quick':

hmi_levl_fd_V P dsidx=2341, slotsfree=0, mode=WR

v

hmi_levl_fd_V_quick dsidx=2342, slotsfree=45, mode=WR

hmi_lev0_cam1_fg P dsidx=1123, slotsfree=0, mode=RD 4’{ dsidx=1122, slotsfree=0, mode=RD }—P

DRMS state at the end of the session:

hmi_levl_fd_V P dsidx=2341, slotsfree=0, mode=WR

hmi_levl_fd_V_quick | dsidx=2342, slotsfree=0, mode=WR

hmi_levl_fd_M P dsidx=2343, slotsfree=0, mode=WR
hmi_levl_fd_M_quick P dsidx=2344, slotsfree=0, mode=WR
hmi_lev0_caml_fg P dsidx=1123, slotsfree=0, mode=RD P dsidx=1122, slotsfree=0, mode=RD [—P
hmi_lev0_cam?2_fg P dsidx=1141, slotsfree=0, mode=RD P dsidx=1140, slotsfree=0, mode=RD [—P

Figure 6: DRMS state during session.

4.2 Concurrency and data integrity

5 JSOC User API

The JSOC will provide a software API that allows pipeline programs written in C, Fortran, IDL or
Matlab to insert new data record, read and update the values of keywords and links and access the
contents of the data segments.

5.1 Function calls and their semantics
5.1.1 Session

DRMS_Session_t * drms_handle = drms_connect(char *DRMS_locator, char *user, char *passwd)
Called by the client to open a new socket to a running DRMS instance. The DRMS process
spawns (and detaches?) a new thread which will pass database calls from the new client
through to the Oracle database connection shared by all clients of the same DRMS instance.
The string “DRMS_locator” is some TBD descriptor that specifies which DRMS instance to
connect to and how. It could be of the form ¢ ‘hostname:port’’. If a connection cannot be
established the drms_handle returned is NULL.

void drms_disconnect (DRMS Session_t *drms_handle, int abort)
Called by the client to disconnect from DRMS. If abort is 1 the client issues an abort command
to the DRMS instance which will roll back all changes made by clients in the current session.
If abort is 0 then all data records created or modified by the client will be commited to the
archive unless a subsequent module issues an abort.

21

int

status = drms_commit (DRMS Session_t *drms_handle)

Called by the client to force DRMS to commit the data records created so far in the session.
DRMS will commit all records inserted into the database and tell SUMS to archive data units
created so far. This call can be used for creating check-points in sessions.

void drms_abort (DRMS Session_t *drms_handle)

drms_abort first calls drms_disconnect with abort=1 to discard all data records and storage
units created in the current session. It then prints to stderr an error message containing the
file and line number where the call to drms_abort occured, followed by a stack dump. Finally
the program will be terminated with a non-zero exit code.

5.1.2 Records

int

int

int

status = drms_open records(DRMS Session_t *drms_handle, char *dataset_desc, int
DRMS_Record_t ***records, int mode)

Open existing data records. The parameter dataset_desc contains a dataset descriptor string
using the syntax described in Section 1.4. The number of records matching the descriptor
is returned in (*num records), and an array containing pointers to the records retrieved is
returned in (*xrecords). If mode=READONLY the record will be opened as read-only. Opening
with mode=CLONE_COPY is shorthand for opening and cloning (with mode=COPY DATA) records
in a single call and corresponds to the following code snippet:

int num_recs, *flags;
DRMS_Record_t **old_recs, **new_recs;

drms_open_records (drms_handle, dataset_desc, &num_recs, &old_recs, READONLY);
new_recs = (DRMS_Record_t **) malloc(num_records*sizeof (DRMS_Record_t *));
mode = malloc(num_records*sizeof (int));
for (i=0; i<num_recs; i++)
flags[i] = COPY_DATA;
drms_clone_records(drms_handle, num_records, old_recs, new_recs, flags);
for (i=0; i<num_recs; i++)
flags[i] = DISCARD;
drms_close_records(drms_handle, num_recs, old_recs, flags);

Opening with mode=CLONE_SHARE is shorthand for opening and cloning with mode=SHARE DATA.
See the desciption of drms_clone records below.

*num_records,

status = drms_clone_records(DRMS Session_t *drms_handle, int num_records, DRMS Record._t

xinput [num records], DRMS Record_t *output[num records], int mode[num records])

Clones a set of existing data records. For each input record input [i],7 =0,...,num records—
1, create a copy of it, assign the copy a new unique record number.

The parameter mode can take the values COPY_DATA, SHARE DATA and determines whether the
data segment files are copied or the old data segment shared between the old and the new
record. If mode=COPY DATA then the data segments are copied to a new slot in a storage unit
and the caller will have permission to open them for writing. If mode=SHARE DATA the new
record will point to the data unit slot containing the data segments of the old record, and will
not have permission to open them for writing. [exactly how permissions on datasegments
will work is TBD]

If the value returned in status is 0 the call suceeded. If status is -1 an unknown error
occured. TBD: [Add positive status codes for known error conditions]

status = drms_create_records (DRMS Session_t *drms_handle, char *series, int num._records,

DRMS_Record_t *records[num_records])

22

Create num_records new records from the series whose name is given by the string argument
series and return handles to the records in the array records. Each record will be given a
unique record number and its keywords and links will be initialized to their default values. If
the series definition contains one or more data segments, DRMS will assign a storage unit to
each record. This may involve allocate new data units from SUMS if not enough slots available
in new storage units already opened for writing for the series. If the value returned in status
is 0 the call suceeded. If status is -1 an unknown error occured. TBD: [Add positive
status codes for known error conditions]

int status = drms_close_records (DRMS Session_t *drms_handle, int num_records, DRMS Record_t
*records [num records], int action[num.records])

This call tells DRMS to close num_records data records identified by the handles in the array
argument records. The optional array action has an entry for every record telling DRMS
what to do with the record. Entries in action can take the values COMMIT and DISCARD.

A value of action[i]=COMMIT will tell DRMS to insert the keyword and link values for record
i in the record database, and to mark any of the data segment files written to a storage unit
for subsequent archiving by the SUMS.

A value of action[i]=DISCARD will tell DRMS to discard the record, i.e. not insert it into
the database. DRMS will also delete data segment files associated with the record, unless the
record was created by drms_clone records with mode=SHARE DATA.

For “old” records opened with drms_open_records in read-only mode, action always defaults
to DISCARD. For “new” records created by calling
e drms_open_records with mode=CLONE_COPY or mode=CLONE _SHARE,
e drms_clone records with mode=COPY DATA or mode=SHARE DATA
e drms_create_records
the value of action always defaults to COMMIT. If action is NULL, the defaults just mentioned
apply. drms_clone_records frees all memory associated with the records.
If the value returned in status is O the call suceeded. If status is -1 an unknown error
occured. TBD: [Add positive status codes for known error conditions]
char * drms_get_record_path(DRMS_Record-t *record)
Returns a malloced string containing a path to the directory where data segment files associated
with record reside. It is the responsibility of the caller to free the returned string.
void drms_free_record(DRMS Session_t
drms_handle, DRMS_ Record_t *record)
Frees the memory associated with record.
void drms_free_record(DRMS Session_t *drms_handle, int num.records,
DRMS Record_t *records[num records])

Frees the memory associated with record[i], i=1,...,num records-1.

5.1.3 Keywords

int status = drms_setkey_char (DRMS Record_t *record, char *keyname, char value)

int status = drms_setkey_int (DRMS Record_t *record, char *keyname, int value)

int status = drms_setkey_short(DRMSRecord._t *record, char *keyname, short value)

int status = drms_setkey_longlong(DRMS Record_t *record, char *keyname, long long value)

23

Table 1: List of status codes returned by drms_setkey and drms_getkey family of functions.

status | C macro Meaning

0 SUCCESS Success, no loss of accuracy

1 JSOC_INEXACT Success, possible loss of accuracy

-1 JSOC_RANGE Failure, value out of range

-2 JSOC_BADSTRING | Failure, trying to convert invalid string to numeric type
-3 JSOC_MISSING Failure, keyname refers to non-existing keyword

Table 2: Matrix of status return values from the drms_setkey and drms_getkey family of functions
depending on the types of source and destination operands in the call. In addition all calls can
return -3. See Table 1 for the meaning of the various values.

destination type || char short int long long | float double string

source type

char 0 0 0 0 0 0 0
short -1,0 0 0 0 0 0 0
int -1,0 -1,0 0 0 0,1 0 0
long long -1, 0 -1, 0 -1, 0 0 0,1 0,1 0
float -1,0,1 | -1,0,1 |-1,0,1 | -1,0,1 0 0 1
double -1,0,1 | -1,0,1 1,0,1 |-1,0,1 -1,0,1 |0 1
string -2,-1,0 | -2,-1,0 | -2,-1,0 | -2,-1,0 -2,-1,1(-2,-1,1]0

int status = drms_setkey_float(DRMSRecord._t *record, char *keyname, float value)
int status = drms_setkey_double(DRMS Record_t *record, char *keyname, double value)

int status = drms_setkey_string(DRMS Record_t *record, char *keyname, char *value)

These functions are used to assign a value (given by the argument value) to a keyword of
the data record pointed to by record. The name of the keyword is given by the string argu-
ment keyname.

When the type of value and the named keyword agrees the assignment always succeeds and
status=0 is returned. List of possible return value for status:

Notice that the string to floating point conversions never return status=0, but instead return
status=1 for a successful conversion, indicating that accuracy may have been lost. Certain
strings like "0.25" can in principle be converted to floating point without loss of information,
whereas strings like "0.1" do not have a finite binary representation. The C library functions
strtof and strtod used internally in JSOC do not provide information to distinguish the two
cases, so we take the more cautious approach of always returning status=1 to remind the user
that rounding may have occured. The same argument holds for conversion from floating point
to string.

char drms_getkey_char (DRMS Record_t *record, char *keyname, int *status)

short drms_getkey_short(DRMS Record._t *record, char *keyname, int *status)

int drms_getkey_int (DRMS_Record_t *record, char *keyname, int *status)

long long drms_getkey_longlong(DRMS Record_t *record, char *keyname, int *status)
float drms_getkey float(DRMSRecord_t *record, char *keyname, int *status)

double drms_getkey_double(DRMS Record_t *record, char *keyname, int *status)

24

char * drms_getkey_string(DRMS Record_t *record, char *keyname, int *status)

These functions return the value of keyword from the data record pointed to by record.
The name of the keyword is given by the string argument keyname. If status is not NULL,
one of the exit codes listed in Table 1 will be returned. If status is NULL two things can
happen: If the status value would have been non-negative the call returns successfully. If the
status value would have been negative the drms_abort is called and the program is terminated
and information about where the error occured is written to stderr.

5.1.4 Links

int status = drms_setlink (DRMS Record_t *record, char *linkname, int index)

Set the link named linkname in the data record associated with record to point to a given
record in the target series. The target series is defined in the global series definition of the
series to which record belongs. If the link type is static, index should contain a unique record
number in the target series. If the link type is dynamic, index should contain a primary index
value in the target series.

If status=0 the call succeeded. If status=-1 the call failed because there is no link named
linkname in record. [What to do if index refers to a record in the target series
that does not (yet) exist? Should this be checked at runtime by querying the
database?]

int status = drms_getlink(DRMS_Record_t *record, char *linkname, char **target series,
int *index)
Return the target series and index of a link. If a link with the name in linkname exists
status=0 is returned indicating success. Otherwise status=-1 is returned.

DRMS_ Record_t *record = drms_followlink(DRMS Record_t *record, char *linkname, int *status)

Return a record containing the target record pointed to by the link named linkname in record.
A dynamic link will be resolved to the record with the highest record number among those
with primary index equal to the one in the link.

If no such target record exists or there is no link named 1inkname a NULL pointer is returned.
If status is not NULL it is set to 0 for “success”, -1 for “no such target record”, and -2 for
“no such link”.

DRMS_ Record_t **record = drms_followlink_allversions(DRMS Record_t *record, char *linkname,
int *num_versions, int *status)

Works like drms_followlink, except that if the link is a dynamic link an array is returned of
all record with primary index equal to the one in the link. The number of matching records is
returned in *num_records.

5.1.5 Data Segments

DRMS DataSegment_t drms_open_datasegment (DRMS Record_t *record, char *segment name, int
mode)

blah

DRMS DataSegment_t drms_close datasegment (DRMS Record_t *record, char *segment name,
int mode)

blah

25

5.2 Language bindings
5.2.1 C bindings

5.2.2 Fortran bindings
5.2.3 IDL bindings

5.2.4 Matlab bindings

26

A JSOC Internal functions

Currently a prototype is being developed, which contains the functions below that implement the
internals of the JSOC library. Notice that some of the listed functions are fairly low level and will
never have to be called by somebody implementing, e.g., a science pipeline module.

A.1 JSOC API types

Below is the contents of the header file jsoc_types.h, which defines the data structures for series,
record, keywords, links, and data segments.

#ifndef _JSOC_TYPES_H
#define _JSOC_TYPES_H

#include "db.h"
#include "hash_table.h"

/* Constants */

#define JSOC_MAXNAMELEN (255)
#define JSOC_MAXHASHKEYLEN (JSOC_MAXNAMELEN+20)
#define JSOC_MAXUNITLEN (20)
#define JSOC_MAXCLASSES (8192)
#define JSOC_MAXQUERYLEN (8192)
#define JSOC_MAXPATHLEN (8192)
#define JSOC_MAXFORMATLEN (20)
#define JSOC_MAXRANK (255)
#define JSOC_MAXDATASEGMENTS (255)
#define JSOC_LAZY_INIT (1L)
#define JSOC_MAXCOMMENTLEN (2048)

[Fxxkkrkkrckkrckkkkkkookkookok . JSO0C related types s xkkskkkskrkskkkkrkkrkkkkkk /

/* ("Keyword") values of keywords belong to one of the following
simple classes. */
typedef enum {JSOC_TYPE_CHAR, JSOC_TYPE_SHORT, JSOC_TYPE_LONG,
JSOC_TYPE_LONGLONG, JSOC_TYPE_FLOAT, JSOC_TYPE_DOUBLE,
JSOC_TYPE_DATETIME, JSOC_TYPE_TIMESTAMP,
JSOC_TYPE_STRING} JSOC_Simple_t;

#ifndef JSOC_TYPES_C
extern char *mdc_type_names[];
#endif

#define JSOC_MAXTYPENAMELEN (9)
#define JSOC_DATETIMELEN (32)
#define JSOC_TIMESTAMPLEN (32)

typedef union JSOC_Simple_Value
{
char char_val;
short short_val;
long long_val;
long long longlong_val;
float float_val,;
double double_val;
char datetime_val[JSOC_DATETIMELEN] ;
char timestamp_val[JSOC_TIMESTAMPLEN];
char *string_val;
} JSOC_Simple_Value_t;

27

typedef struct JSOC_Keyword_struct

{
char name[JSOC_MAXNAMELEN] ; /* Keyword name. */

/* If this is an inherited keyword, islink is non-zero,
and linkname holds the name of the link which points
to the dataset holding the actual keyword value. */

int islink;
char linkname[JSOC_MAXNAMELEN]; /* Link name. */

int column; /* Which column in the dataset table
holds this keyword? */
JSOC_Simple_t type; /* Keyword type. */

char format[JSOC_MAXFORMATLEN]; /* Format string for formatted input
and output. */

char unit[JSOC_MAXUNITLEN]; /* Physical unit. */
int size; /* Size of keyword data in bytes.*/
JS0C_Simple_Value_t value; /* Keyword data. If the Keyword is used as part

of a series template then value contains the
default value. */
char comment [JSOC_MAXCOMMENTLEN] ;

} JSOC_Keyword_t;

/* Links to other objects from which keyword values can be inherited.
A link often indicates that the present object was computed using the
data in the object pointed to.

*/

typedef enum { SIMPLE_LINK, QUERY_LINK } JSOC_Link_type_t;
typedef struct JSOC_Link_struct
{
char name[JSOC_MAXNAMELEN] ; /* Link name. */
char target_series[JSOC_MAXNAMELEN] ; /* Series pointed to. */
int id, version;
int column; /* Column in main series table where the
target id is found; version is found
in (column+1). */
JSOC_Link_type_t type;
char where_clause[JSOC_MAXQUERYLEN] ;
char comment [JSOC_MAXCOMMENTLEN] ;
} JSOC_Link_t;

/*
The data descriptors hold basic information about the in-memory
representation of the data.
*/
typedef enum {JSOC_BINARY, JSOC_FITZ, JSOC_FITS} JSOC_Storage_Protocol_t;
typedef struct JSOC_Data_Locator_struct

{
long long dsindex; /* Index to the storage management table in
the database. */
char *path; /* If non-null points to the resolved path. */

28

JS0C_Storage_Protocol_t storage_protocol;
} JSOC_Data_Locator_t;

typedef struct JSOC_Data_struct

{
JSOC_Simple_t type; /* Type of the observable. */
char unit[JSOC_MAXUNITLEN]; /* Physical unit. */
int size; /* Size in bytes of the elements. */
int naxis; /* Number of dimensions. */

int axis[JSOC_MAXRANK] ; /* Size of each dimension. */
} JSOC_Data_t;

/* Data descriptor for a dataset. The data part of a dataset consists
of a collection of observables. Each observable is an n-dimensional
array of a simple type. */

typedef struct JSOC_Data_struct

{

JSOC_Data_Locator_t location; /* Data set location and storage protocol. */
int num_obs; /* Number of observables. */
JSOC_Data_t obs[JSOC_MAXDATASEGMENTS]; /* An array of descriptors.
Each layer represents an
n-dimensional array of a
single observable.*/
} JSOC_Data_t;

/* An in-memory slice of an observable. If the full observable is
the n-dimensional array
A(O: (obs—>axis[0]-1),0: (obs->axis[1]-1),...,0: (obs->axis[obs->naxis-1]-1)
then the memory location pointed to by data holds the slice
A(start[0] :end[0] ,start[1]:end[1],...,start[obs->naxis-1]:end[obs->naxis-1])
stored in column major order.
*/
typedef struct JSOC_Data_Slice_struct
{
JSOC_Data_t *obs;
int start[JSOC_MAXRANK] ;
int end[JSOC_MAXRANK] ;
void *data;
} JSOC_Data_Slice_t;

/* Datastructure holding a single data record. */
typedef struct JSOC_DataRecord_struct
{

struct JSOC_Env_struct *env; /* Pointer to global JSOC environment. */

/* The following three fields uniquely identify the object: */
char seriesname[JSOC_MAXNAMELEN]; /* Name of series this dataset belongs to. */
int id, version; /* (id, version) is a unique identifier
of this object within its series. */
char hashkey[JSOC_MAXHASHKEYLEN]; /* Hash key is a string containing
"seriesname_<id>_<version>". */

/* Dirty flags */

int keyw_dirty; /* Have the keywords been modified? */
int link_dirty; /* Have the links been modified? x*/
int data_dirty; /* Have the data arrays been modified? */

29

}

/* Keywords. */

int num_keyw, max_keyw;
JSOC_Keyword_t *keyw;
Hash_Table_t keyw_hash;

/* Links. */

int num_link, max_link;
JSOC_Link_t *1link;
Hash_Table_t 1link_hash;

/* "Image" data. */
JSOC_Data_t *data;
JSOC_DataRecord_t;

/* Number of keywords. */
/* Array of keywords. */
/* Hash table for fast lookup of keywords. */

/* Number of links. */
/* Array of links. */
/* Hash table for fast lookup of links. */

/* Data descriptor. */

typedef struct JSOC_Series_struct

{

}

typedef struct JSOC_Env_struct

{

}

int tapegroup;
int chunksize;
int archive;

char author [JSOC_MAXCOMMENTLEN] ;
char owners[JSOC_MAXCOMMENTLEN] ;
char description[JSOC_MAXCOMMENTLEN] ;

JSOC_DataRecord_t template;

JSOC_Series_t;

int errno;
DB_Handle_t *db;

/* Error flag. */
/* Database connection handle. */

/* Series cache data structures. */

int num_series;

char *init_tag;

JSOC_DataRecord_t *series_cache;
Hash_Table_t series_hash;

DB_Text_Result_t *series_names; /%

/* Total number of series listed in the
database. */
/* Array of tags indicating which
series templates have been populated
with data from the database. */
/* Cache array of series templates for
all series in the system. */
/* Hash table for mapping series names
to indices in the series_cache array. */
Table of all seriesnames returned from
the database. These strings are used as
keys in the hash table. */

/* DataRecord cache data structures. */

int num_ds;
int max_ds;

char *ds_freelist;

int ds_firstfree;

JSOC_DataRecord_t *ds_cache;

Hash_Table_t ds_hash;

JSOC_Env_t;

/* Number of datasets in memory. */

/* Max number of datasets in cache
memory. */

/* List of free slots in the

ds_cache. */

/* Index of first free slot in the
ds_cache */
/* Array of all datasets currently
in memory. */

/* Hash table for mapping dataset
identifer (seriesname, id, version) to
indices in the ds_cache array. */

30

/* Return enum value for a simple type given its name. */

JSOC_Simple_t mdc_str2type(char *);

const char *mdc_type2str(JSOC_Simple_t type);

int mdc_copy_demdc(JSUC_Simple_t mdc_type, JSOC_Simple_Value_t *mdc_dst,
DB_Type_t db_type, char *db_src) ;

DB_Type_t mdc2dbtype(JSOC_Simple_t type);

int mdc_sizeof (JSOC_Simple_t type);

A.2 JSOC environment functions

/* - Open authenticated data base connection.
- Retrieve master series lists.
- Build hash table over seriesnames. The series templates
will be built on demand by querying the master keyword, limnk
and observable tables.
- Initialize datarecord cache and hash table. */
JSOC_Env_t *jsoc_initialize(const char *host, const char *user,
const char *password, const char *dbname);

/x - If commit_dirty==1 then commit all modified datarecords in the cache
to the database.
- Close database connection and free JSOC data structures. */
int jsoc_shutdown(JSOC_Env_t *env, int commit_dirty);

/* Commit all modified datarecords in the cache to database. */
int jsoc_commit_dirty(JSOC_Env_t *env);

/*¥kxkkkkkkk*kx* Datarecord cache operations, ook ok ok ok ok ok ok 3k ok ok ok kok ko /

/* Return a cache slot to the free list and update firstfree. */
void js0c_env_release_drcache_slot(JSOC_Env_t *env, int index);

/* Get the index of the first free slot in the
dr cache and mark it used. If the cache is full
double its size. */

int jsoc_env_get_drcache_slot(JSOC_Env_t *env);

/* Add or remove datarecords from the JSOC environment. */
int jsoc_env_remove_dr(JSOC_Env_t *env, JSOC_Datarecord_t *dr);

A.3 JSOC series functions

/* Parse a JSOC Series Definition string to a JSOC_Series
object (a record template plus global series info). /*
JSOC_Series_t *jsoc_parse_description(JSOC_Env_t *env, char *desc)

/* Given a JSOC series object execute the SQL code required to
generate the tables and global table entries in the data base
to represent the series. */

int jsoc_create_series(JSOC_Env_t *env, JSOC_Series_t *series)

/* Given a JSOC series object corresponding to an existing series
execute the SQL code required to update the database tables
and global entries to reflect any changes to the series
definition. */

int jsoc_update_series(JSOC_Env_t *env, JSOC_Series_t *series)

31

A.4 JSOC record functions

/* Retrieve a data record from the database
JSOC_DataRecord_t *jsoc_dr_retrieve(JSOC_Env_t *env, const char *seriesname,
int id, int version);

/* Commit a modified data record to the database. */
int jsoc_dr_commit(JSOC_Env_t *env, JSOC_DataRecord_t *dr);

/* Retreive a linked datarecord. */
JSOC_DataRecord_t *jsoc_dr_follow_link(JSOC_Env_t *env, JSOC_DataRecord_t *dr,
const char *linkname);

/* Query to find data records from a series satisfying a given condition. */
JSOC_DataRecord_t *jsoc_dr_query(JSOC_Env_t *env, const char *seriesname,
const char *condition);

/* Assign the datarecord the next unique sequence number from
the database. The version number is set to 1. */
int jsoc_dr_assign_next_id(JSOC_Env_t *env, JSOC_DataRecord_t *dr) ;

/* Return a pointer to a copy of the series template whose
id has been set to the next unique sequence number in the database. */
JSOC_DataRecord_t *jsoc_dr_new(JSOC_Env_t *env, const char *seriesname) ;

/* Return a pointer to the series template. This template is used for
building new data records belonging to this series. */
JSOC_DataRecord_t *jsoc_dr_template(JSOC_Env_t *env, const char *seriesname);

/* Return a pointer to a copy of the series template. cache_index is set
to the number of the slot in the JSOC datarecord cache used. */
JSOC_DataRecord_t *jsoc_dr_allocate(JSOC_Env_t *env, const char *seriesname,
int *cache_index);

/* Free a data record structure. */
int jsoc_dr_free(JSOC_Env_t *env, JSOC_DataRecord_t *dr);

/* Deep copy a data record. */
int jsoc_dr_copy(JSOC_Env_t *env, JSOC_DataRecord_t *dst, JSOC_DataRecord_t *src);

A.5 JSOC keyword functions

/* Versions with type conversion. */

int jsoc_keyw_get_char(JSOC_DataRecord_t *dr, const char *keyw_name, int *value);

int jsoc_keyw_get_int(JSOC_DataRecord_t *dr, const char *keyw_name, char *value);

int jsoc_keyw_get_float(JSOC_DataRecord_t *dr, const char *keyw_name, float *value);

int jsoc_keyw_get_double(JSOC_DataRecord_t *dr, const char *keyw_name, double *value);

int jsoc_keyw_get_string(JSOC_DataRecord_t *dr, const char *keyw_name, char *xvalue);

/* Generic version. */

int jsoc_keyw_get (JSOC_DataRecord_t *dr, const char keyw_name, JSOC_Simple_Value_t *value);

/* Versions with type conversion. */

int jsoc_keyw_set_char(JSOC_DataRecord_t *dr, const char *keyw_name, char value);
int jsoc_keyw_set_int(JSOC_DataRecord_t *dr, const char *keyw_name, int value);

32

int jsoc_keyw_set_float(JSOC_DataRecord_t *dr, const char *keyw_name, float value);
int jsoc_keyw_set_double(JSOC_DataRecord_t *dr, const char *keyw_name, double value);
int jsoc_keyw_set_string(JSOC_DataRecord_t *dr, const char *keyw_name, char *xvalue);

/* Use keyword hash table to quickly locate the data structure
for specific keyword. */
JSOC_Keyword_t *jsoc_keyword_lookup(JSOC_DataRecord_t *dr, const char *keyw_name);

A.6 JSOC link functions

/* Define a simple query by specifying the data record pointed to. */
int jsoc_link_set_static(JSOC_Env_t *env, JSOC_DataRecord_t *dr, const char *link_name,
const char *target_series, int id, int version);

/* Define a query-link by specifying the target series and query. */
int jsoc_link_set_query(JSOC_Env_t *env, JSOC_DataRecord_t *dr, const char *link_name,
const char *target_series, query);

/* Bind a query-link to a specific datarecord by evaluating the link query
on the target series table. Notice that this function is just a no-op
when applied to a static link. */

int jsoc_link_resolve(JSOC_Env_t *env, JSOC_Link_t *1ink) ;

/* Return list of all datarecordr linked to *dr. */
JS0C_DataRecord_t *jsoc_dr_get_all_links(JSOC_DataRecord_t *dr) ;

A.7 JSOC data segment functions
[MISSING]

B JSOC Database Interface Layer (DIL)

This section describes a database interface layer (DIL) used to implement the JSOC. The DIL was
created to provide a unified call level C interface to multiple database backends. So far, DIL contains
support for Oracle 10g (via the Oracle OCI interface), and the two open source databases MySQL
(version 4.1) and PostgreSQL (version 7.4.x).

B.1 DIL initialization and connect functions

/* Establish authenticated connection to database server. */
DB_Handle_t *db_connect(const char *host, const char *user,

const char *passwd, const char *db_name);
/* Disconnect from database server. */
void db_disconnect(DB_Handle_t *db);

B.2 DIL data manipulation functions

/* SQL data manipulation statement with fixed input and no output. */
int db_dms(DB_Handle_t *db, int *row_count, const char *query_string);

/* SQL data manipulation statement with variable array input and no output. */
int db_dmsv(DB_Handle_t =*dbin, int *row_count, const char *query_string,
int n_rows, ...);

33

B.3 DIL column types and query result types

/* Generic column types. */

typedef enum DB_Type_enum

{
DB_CHAR, DB_INT1, DB_INT2, DB_INT4, DB_INTS,
DB_FLOAT, DB_DOUBLE,
DB_STRING, DB_VARCHAR

} DB_Type_t;

/* Binary query result column. */
typedef struct DB_Column_struct

{
char *column_name; /* Name of the column. */
DB_Type_t type; /* The data type. */
unsigned int num_rows; /* Number of rows in the column. */
unsigned int size; /* Size of data type. */
char *data; /* Array of type "type" holding the column data.

The total length of *column_data is num_rows*size.
*/
signed short *is_null; /* An array of flags indicating if the field
contained a NULL value. */
} DB_Column_t;

/* Binary query result table. */

typedef struct DB_Binary_Result_struct

{
unsigned int num_rows; /* Number of rows in result. */
unsigned int num_cols; /* Number of columns in result. */
DB_Column_t *column;

} DB_Binary_Result_t;

/* Text query result table. x/
typedef struct DB_Text_Result_struct
{

unsigned int num_rows;

unsigned int num_cols;

char **column_name; /* Name of the column. */

int *column_width; /* Max width of the column. */

char *buffer; /* buffers holding the results. On buffer per row. */
char *x*xfield; /* field[i][j] is a string contained in the i’th row

and j’th column of the result. */
} DB_Text_Result_t;

B.4 DIL query functions

/* SQL query statement with result returned as table of strings. */
DB_Text_Result_t *db_query_txt(DB_Handle_t #*db, const char *query_string);

/* SQL query statement with result returned as table of binary data. */
DB_Binary_Result_t *db_query_bin(DB_Handle_t *db, const char *query_string);

34

B.5 DIL query result functions

/* Functions for extraction the field values from a binary result table. */
char *db_binary_field_get(DB_Binary_Result_t *res, unsigned int row,
unsigned int col);
int db_binary_field_is_null(DB_Binary_Result_t *res, unsigned int row,
unsigned int col);
DB_Type_t db_binary_column_type(DB_Binary_Result_t *res, unsigned int col);
void db_print_binary_field_type(DB_Type_t dbtype) ;

/* with conversion... */

char db_binary_field_getchar(DB_Binary_Result_t *res, unsigned int row,
unsigned int col);

int db_binary_field_getint(DB_Binary_Result_t *res, unsigned int row,
unsigned int col);

float db_binary_field_getfloat(DB_Binary_Result_t *res, unsigned int row,

unsigned int col);
double db_binary_field_getdouble(DB_Binary_Result_t *res, unsigned int row,
unsigned int col);

void db_binary_field_getstr(DB_Binary_Result_t *res, unsigned int row,

unsigned int col, int len, char *str);

/* Formated printing of table of results. */

void db_print_binary_result(DB_Binary_Result_t *res);

void db_print_binary_field(DB_Type_t dbtype, int width, char *data);

int db_sprint_binary_field(DB_Type_t dbtype, int width, char *data, char *dst);
int db_binary_default_width(DB_Type_t dbtype);

void db_print_text_result(DB_Text_Result_t *res);

/* Free result buffers allocated by db_query functions. */
void db_free_binary_result(DB_Binary_Result_t *db_result);
void db_free_text_result(DB_Text_Result_t *db_result);

B.6 DIL transaction functions

int db_commit (DB_Handle_t *db);
int db_start_transaction(DB_Handle_t *db);
int db_rollback(DB_Handle_t *db);

B.7 DIL sequence functions

unsigned long db_sequence_getnext(DB_Handle_t *db, const char *tablename);
unsigned long db_sequence_getcurrent(DB_Handle_t *db, const char *tablename);

B.8 DIL type conversion functions

char dbtype2char(DB_Type_t dbtype, char *data);

short dbtype2short(DB_Type_t dbtype, char *data) ;

long dbtype2long(DB_Type_t dbtype, char *data);

long long dbtype2longlong(DB_Type_t dbtype, char *data);

float dbtype2float(DB_Type_t dbtype, char *data);

double dbtype2double(DB_Type_t dbtype, char *data);

void dbtypertr(DB_Type_t dbtype, char *data, int len, char *str) ;

35

B.9 Example program

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <time.h>
#include "db.h"

#define SERVER "hmiO"
#define USER "rasmus"
#define PASSWD "sql4rml"
#define DBNAME "rtest"

/* Open a database connection, create a table, insert records into it,

drop the table and close the connection. */
int main(int argc, char *argv[])
{

int i;

DB_Handle_t *db;

DB_Binary_Result_t *result;

DB_Text_Result_t *tresult;

char query[8192];

int row_count, nrows;

int *a;

float *b;

char *c;

/* Ask the user how many records to create. */
printf ("Number of records: ");
scanf ("%d" ,&nrows) ;

a = safemalloc(nrows*sizeof (int));
b = safemalloc(nrows*sizeof (float));
¢ = safemalloc(20*nrows*sizeof (char));

/* Authenticate and connect to the database. */
if ((db = db_connect (SERVER,USER,PASSWD,DBNAME))==NULL)
{
fprintf (stderr,"Couldn’t connect to database.\n");
return 1;

}

/* Drop the table ’test’. */
db_dms (db, &row_count, "drop table test");

/* Create a new table called ’test’ */
if (db_dms(db, &row_count, "create table test (a integer, "
" b float, c varchar(20))"))

{
fprintf (stderr,"Couldn’t create table.\n");
goto bailout;

}

36

/* Start a new transaction. */
db_start_transaction(db);

/* Insert a single row. */
if (db_dms(db, &row_count,
"insert into test values (-2, NULL, ’blah vlah’)"))
{
fprintf (stderr,"Couldn’t insert into table.\n");
goto bailout;
}

/* Insert many rows into test. */
for (i=0; i<nrows; i++)

{
alil = i;
b[i] = 3.1415f+(float)i;
sprintf (&c[i*20], "%-19s","Hello World!");
}
if (db_dmsv(db, &row_count, "insert into test values (?, 7, ?)",nrows,
a,sizeof (int), DB_INT4,
b, sizeof(float), DB_FLOAT,
c,20,DB_STRING))
{
fprintf (stderr,"Insert failed.\n");
goto bailout;
}

/* Commit transaction. */
db_commit (db) ;

/Fxkxkxkxkrkx Test various queries. kkkikikiokikkkkkk/

/* Test summation. */

sprintf (query, "select sum(to_float(a)),sum(b) from test where a>)d and a<id",
nrows/2,3*nrows/5) ;

printf ("\nPerforming query: %s.\n",query);

tresult = db_query_txt(db, query);

printf ("Result has %u rows and %u columns.\n",tresult->num_rows,

tresult->num_cols);
db_print_text_result (tresult);
db_free_text_result(tresult);

/* Test summation again with binary return value. */

printf ("\nPerforming query: ’%s’\n", query);

result = db_query_bin(db, query);

printf ("Result has %u rows and %u columns.\n",result->num_rows,
result->num_cols);

db_print_binary_result(result);

db_free_binary_result(result);

/* Try a query that returns all columns for rows with a<40. */
sprintf (query,"select * from test where a<40");

printf ("\nPerforming query2: ’%s’\n",query);

result = db_query_bin(db, query);

printf ("Result has %u rows and %u columns.\n",result->num_rows,

37

result->num_cols);
db_print_binary_result(result) ;
db_free_binary_result(result);

/* Disconnect from the database. */
db_disconnect (db);

return O;
bailout:

db_disconnect (db);

return 1;

}

C Acronyms

Acronym | Meaning

API Application Programming Interface
JSOC Joint Science Operations Center
JSD JSOC Series Definition

DRMS Data Record Management System
SUMS Storage Unit Management System
DIL Database Interface Layer

38

