
JSOC architecture overview*

The JSOC architecture consists of three principal components: a Data Record
Management System (DRMS) for the storage and retrieval of information on all data,
including ancillary data, in a relational database; a Storage Unit Management System
(SUMS) for the physical storage and retrieval of large volumes of data; and an
Applications Programming Interface (API) to facilitate interaction with DRMS and
SUMS by analysis modules to be run in the pipeline (and outside as well), together
with the analysis modules themselves and supporting libraries and utilities. There is
also a Pipeline User Interface to control the flow of the automatic pipeline processing
of AIA and HMI data from receipt of telemetry to the standard data products.

2.1. DRMS

The JSOC Data Record Management System is built around a relational (Postgres)
database containing the JSOC data catalog. In the DRMS, data are organized into
various data series of like data, each represented by a uniquely-named table in the
database. Each row in a data series table corresponds to a data record, the atomic data
object in the catalog. The columns of the table represent the set of (common) keys
associated with each data record, and the values in each column of a given row
represent the values associated with the corresponding key for the given record. A
data record may include one or more named data segments, references to n-
dimensional data arrays (e.g. images, data cubes) stored in files outside the table. It is
possible to have rows in a data series table to link to rows in other tables. If desired
specific columns in a table with such links can be linked to corresponding columns in
the target records (rows). This allows for propagation of information to records in
dependent data series. It is also possible to have data segments associated with the
records in one data series linked to those of another series.

Data records may be selected explicitly by unique identification numbers, or more
typically through SQL queries resulting in matching of one or more key values. A
data set is defined as an arbitrary set of data records selected from one or more data
series. An example would be the set of HMI Dopplergrams with Observation Times
within a designated interval and having a Data Quality parameter exceeding a given
threshold. Pipeline modules are designed to operate on data sets as input, and may
result in the creation of new data records. Data records in the DRMS are never
removed; when the data in a record are to be modified, a new record is created. For
this purpose, each data series has one or more primary keys defined. All records with
the same union of primary key values are assumed to refer to the same data object,
and the one with the highest identification number will be selected in a match for the
primary key(s). In this way, “header” information may be modified without having to
rewrite the data segment.

The DRMS is designed so that it can be replicated in whole or in part at different
sites. Both master and slave tables are implemented at the JSOC to provide
robustness, and tables from other databases can be selectively mirrored on an
individual basis, with different databases serving as the master for different tables. For
this purpose the table name space is managed with uniquely-assigned prefixes. For
example, all standard data products of the AIA and HMI missions (and only those
products) are in data series named aia.* and hmi.*, respectively. We are using the

Slony-I system for mirroring and backing up of the JSOC databases. Remote mirrors
are currently under development at Lockheed-Martin Solar and Astrophysics Lab, at
the National Solar Observatory, and at Mullard Space Science Laboratory. We expect
several others to be developed prior to the SDO launch.

2.2. SUMS

The SUMS is based on a combination of dedicated disk space and tapes in a robotic
system. SUMS controls the JSOC data storage resources. It manages the disk space
available for storing data and the tape systems, and it tracks the current on-line
location of data. SUMS is implemented as a server program and management utilities.
The SUMS server uses tables in another Postgres database to track “Storage Units”. A
Storage Unit is simply a directory and its subdirectories, if any. A Storage Unit can
contain directories for one or more records from a single series.

SUMS gives each managed storage unit a SUMS identification in the form Dxxxxx
where xxxxx is a unique serial number. SUMS allocates disk space on one of its file
systems, creates a directory named with the unique identifier and provides the
directory name and SUMS identifier to the requesting program (i.e. DRMS). The
requesting program tells SUMS how long to keep the data online and whether or not
to archive them to tape. The SUMS disks at the JSOC are configured in a RAID
system and should provide secure storage online so that only the most valuable or
largest collections of data need be archived to tape. SUMS also provides mechanisms
for grouping data from related data series on a well-defined set of tapes.
The SUMS architecture is designed to be distributed, like the DRMS. Each DRMS
instance must have its own SUMS, though it can be as small as a single dedicated disk
partition, It should be possible for cooperating DRMS systems to share information
about data in selected series, and to make available data that happen to be cached
online at one location to another location over the network if that would be faster than
staging the data from tape at the archive site. Bandwidth costing needs to be
performed among the different sites.

There is a documented API for direct interface to SUMS, but it is probably not of
interest to module writers; it is used internally by applications involving the DRMS
API. Documentation for the DRMS API is in progress.

2.3. DRMS API and analysis modules

Data in the DRMS may be read and written with direct psql commands (and proper
permissions of course). It is expected that application programs, also known as
analysis modules, that require interaction with the DRMS will do so through a
managed socket-level communication interface with the database. For this purpose, a
library of C-language functions has been made available.

In order to use the standard interface to the DRMS embodied in the API, C-language
analysis modules must be implemented as functions (named DoIt()) to be linked to a
common main() that initiates and manages the communication with the DRMS,
passing on the environment and calling parameters directly to the module.

Because the DRMS/SUMS system is designed to support temporary, non-archived
data sets of arbitrary cache lifetime, it may be desirable to isolate the many different

steps of an analysis sequence (e.g. detrending, tracking, domain transofromation,
filtering, model fitting, inversion) as distinct modules, using temporary intermediate
data products. Such intermediate products may also be shared among different
possible branches of one or more pipelines.

*This description was adapted from Local helioseismology in the SDO HMI/AIA data analysis
pipeline, Bogart, R. S., Astronomische Nachrichten, Vol.328, Issue 3, p.352, 03/2007.

	JSOC architecture overview*
	2.1. DRMS
	2.2. SUMS
	2.3. DRMS API and analysis modules

