
JSOC Dataset naming convention for use with the DRMS

version ??, 9 March 2009

Data is stored in the HMI/AIA JSOC in many "Data Series." A Data Series, or more
commonly dataseries, is basically a sequence of like data objects, typically "images" or other
binary data along with associated meta-data. Specifically, a dataseries consists of a sequence
of Data Records, more commonly datarecords, or even more commonly just records. Usually,
each datarecord is the data for one step in "time". Most but certainly not all dataseries are
sequences in time. They can in principle be any list of data objects. It may be helpful to think
of a dataseries as a table of rows and columns where each row represents a single record, and
the columns correspond to elements of meta-data or binary data.

The actual storage methods for the meta-data and array data does not matter for the
description of the naming conventions but some details will help in understanding the use of
the naming system.

A datarecord consists of Keyword tagged meta-data describing the record and 0 or more
named Data Segments (more commonly segments) usually containing binary arrays of data
values. All datarecords in a given dataseries have the same set of keywords and segments,
each having an associated name and type. The dataseries description and the datarecords are
maintained in a relational database called DRMS (Data Record Management System).
DRMS is implemented using a set of PostgreSQL tables (see http://www.postgresql.org).

Properly speaking, DRMS contains only a description of the data corresponding to each
segment in every record. The binary data itself is stored in “Storage Units”, which are
simply directories on disk or tar-files on tape. Storage units are owned by SUMS (Storage
Unit Management System), which maintains tables in PostgreSQL to connect a storage unit
number (or sunum) to its location. A storage unit will contain data for all segments for 1 or
more records from the same series.

In summary:

 A Dataseries consists of a set of:
 Records each of which contains an instance of:
 Keywords including sunum (if applicable), and
 Segments each of which consists of structure information for data.

Records may also contain links to records in other series, but for simplicity this feature will
not be explained in this document.

Normally one or more keywords are designated “primekeys”. The primekeys must together
uniquely identify a record and are used to define the main index for the series. Any records
with the same set of primekey values are assumed to be different versions of the same record
and normally only the most recent version of any record is easily available. Thus the current
version of any record in a given series may be found by specifying the values of the

primekeys for that series. All series have one pre-defined keyword called "recnum" (record
number) which has a unique value for each record in the dataseries and is used for the main
index in the case that no primekeys are defined. The implementation and implications of the
version system is described near the end of this document.

The set of keywords and segments contained in a given dataseries, as well as which
keywords are primekeys and which are indexed in the database, are usually set when the
dataseries is first created. We will mention in passing several aspects of creating dataseries,
but for a full explanation of JSOC series definitions, including a description of links between
dataseries, please refer to http://jsoc.stanford.edu/jsocwiki/Jsd.

In order to access a set of records from a dataseries ones must query the database. We call
that database query a "Dataset Name", or simply a dataset. The DRMS dataset name rules
have been designed with the intention of providing user friendly names that are easy to
remember and use. Hence database queries are actually descriptive names for datasets.

This document is concerned with the identification of datasets. Not so much with the logical
or physical layout of the data or its storage or use but simply with naming conventions and
the use of those naming conventions to identify specific data for purposes of processing.

At this point we must unfortunately introduce a slight ambiguity of terms. Since in DRMS a
dataset is a set of datarecords selected by a query, we call the results of that query a Record
Set, or more commonly a recordset. Hence the terms dataset and recordset will sometimes be
used interchangeably. For the purpose of explanation, however, we shall restrict the
definition of recordset to mean a set of records from a single dataseries. A dataset is then a
collection of recordsets, possibly from different dataseries or even from different catalogs
(see below). It should be born in mind, however, that as seen by the programmer, a dataset
will be contained in a single DRMS_RecordSet_t structure comprising an array of records,
regardless of their “recordset” affinity.

Most recordsets are expected to consist of records from DRMS, but the programmer’s library
and by extension the naming rules do allow for access to data in a few other systems. To help
differentiate the name rules for the different sources we call each source of recordsets a
“Catalog”. Thus the primary catalog of the JSOC system is DRMS. The predecessor to
DRMS, the Data Storage and Distribution System (DSDS) is another catalog. The unix/linux
file system can also be viewed as a catalog and the JSOC recordset naming scheme allows
for datarecords to be specified as simple files or directories of files in particular standard
storage protocols (presently only simple FITS files are supported in this way.)

The naming rules provide several approaches to end up with a dataset. The “name” can be
(and normally is) as simple as a single query resulting in a compact list of one or more
records from a single series or it can be a list of such specifications or it can be a file name
where the file contains a list of such specifications.

http://jsoc.stanford.edu/jsocwiki/Jsd

In the case of a simple query, dataset name should be in such a form that it can be published
in documents in a way so that the same data (possibly of later version) may be extracted at a
later time.

The JSOC DRMS naming scheme is described here as a formal grammar. The following
syntax is described using a BNF1 format where entities are in angle brackets “<>” and literals
are not enclosed except isolated non-alphanumeric characters which may be enclosed in “”.
Variants are separated by “|”. Optional elements are in curly brackets “{}”. Parentheses “()”
may be used to group variants to make precedence specific. Recursion is explicit where
allowed. The common use of square brackets “[]” for single options is not used here to avoid
confusion with the use of “[]” as literals. Each entity is defined after it is first used. An
ellipsis “...” is used to show either an incomplete list or a set of any text depending on
context. “::=” is pronounced “is defined as a”. “C”-like notation is used for non-printing
characters.

Importantly, these BNF grammatical clauses describe C strings. This implies an array of
characters followed by a NULL terminator. The NULL terminator itself is not explicitly
shown in any of the grammatical clauses that follow, but it is implied. In many cases, the
C strings being described are strings that are typed into a terminal. However, in some cases,
the C string may be the content of a file. In those cases, the end-of-file character is explicitly
shown to impress upon the reader that the string resides in a file, and not on the command
line.

A full DRMS name specification is at: http://jsoc.stanford.edu/jsocwiki/DrmsNames

Catalog

The term catalog is used here to denote an entire data collection. All of the MDI and solar
group data managed by DSDS is part of the DSDS catalog. Similarly all of the HMI and
AIA data managed in the JSOC at Stanford will be part of the DRMS catalog. It is possible
that new catalogs will be added in the future, such as Virtual Observatory Tables, and as
already mentioned, the file system constitutes another catalog. Each catalog will have its
own syntax for specifying recordsets, described below.

For those familiar with DSDS, some of the similarities and differences between it and DRMS
will be mentioned in the sections that follow. For those who know nothing about DSDS,
these comments can be safely ignored. Be aware that terms like dataset do not mean the
same thing in the two systems.

Series

DRMS dataseries names consist of two parts separated with a “.” (period character aka
“dot”). The leading part is a project name and is implemented as a Postgres namespace.
This means that access privileges can be set for all dataseries in each project independently.

1 There are many “BNF” formats. See e.g. http://www.cs.man.ac.uk/~pjj/bnf/ebnf.html. Therefore the
conventions used here must be explicitly defined.

http://jsoc.stanford.edu/jsocwiki/DrmsNames
http://www.cs.man.ac.uk/~pjj/bnf/ebnf.html

The space of names in this first section will contain some reserved names, such as mdi, hmi,
aia, wso, etc. For these reserved names the default ownership and permissions will be
maintained in a table of reserved project names. Individual users each have their own project
names which by convention consist of two parts with the leading part indicating their group
or institution and the latter part their specific identification, separated by an underscore. For
example, one project name is “su_phil”, where su means Stanford University, and phil is a
personal identifier. The personal identifier is independent of both database (PostgreSQL)
username and login userid, although it is common to find all three to be the same. The series
specifier part of the name (after the dot) should indicate the observable, the cadence, the
mapping or region size, the reduction level, etc., as appropriate. For example, a complete
series name might be “hmi.fd_V_50s” for HMI full disk Dopplergrams at a 50 second
cadence.

A DRMS dataseries has a “prime index” which is defined in its series definition by a list of
keyword names or defaulted to the absolute record number. These are the primekeys (see
above). The attributes named are used to construct a database index to allow rapid location
of records identified by a value of its prime index. An example might well be using the
attribute “T_OBS” as a prime index. In the case that the prime index keyword value is a real
number (floating point type) it is often convenient to define a discrete mapping to a “slotted”
axis to remove the uncertainty of exact matching of imprecise values. Slotted prime
keywords are discussed later in this document. One may also specify keywords in addition to
the primekeys to be indexed; please refer to http://jsoc.stanford.edu/jsocwiki/Jsd.

DSDS dataset names had the form “prog:XXX,level:XXX,series:XXX[NNN]”, where the
prog part played the role of project name, and the level and series parts together would give
the information contained in the series specifier part of a DRMS dataseries name. The
number enclosed in “[]” was an integer series number that was the sole index for the series.
As in DRMS, multiple versions of data were allowed. Old versions could be retrieved by
specifying a level number in addition to the series number. A record in a conforming dataset
in DSDS could contain at most a single data array, whereas DRMS records are allowed to
contain multiple segments, each of which corresponds to an n-dimensional array of data.

Dataset

A dataset is a list of recordsets. A dataset name is a description of that collection. In the
description here the term “dataset” is used interchangeably with “dataset name” where the
meaning is obvious from the context. A dataset may contain records from one or more
dataseries. A subset of the dataset that can be simply described as a group of records from a
single dataseries is called a recordset. With this description, to specify a dataset on the
command line, in a file, or in code (in memory), one specifies a collection of recordsets
separated by a semicolon, a comma, a comment in the form of “#” through to the first
instance of another “#”, a comment ending in a newline character, or a newline character.
The following grammar makes this explicit.

http://jsoc.stanford.edu/jsocwiki/Jsd

<dataset> ::= <dataset> {<dataset_sep> {<dataset>}} |
<dataset_listfile> | <record_set>

<dataset_sep> ::= “;” | “,” | “#”...\n | “#”...“#” | \n

The <dataset_listfile> entity is a mechanism for including datasets specified in a file
into another dataset specification (which may reside on the command line, or in yet another
file).

<dataset_listfile> ::= “@”<pathname>

where the contents of <pathname> are described by this grammar:

<contents of pathname> ::= <dataset> <end-of-file>

<dataset_listfile> refers to a file that contains a valid <dataset> string. Note: the
<dataset_sep> character of choice will most likely be a newline character, but this is not a
restriction. This use of the “dataset_listfile” concept is illustrated in this example:

Example: A file named “/home/phil/magpair” containing the two lines:
{prog:mdi,level:lev1.8,series:fd_M_96m_01d[5599]}
hmi.M_lev1[2008.05.01/1d:96m]

used in a command line like:
Compare_mags in=@/home/phil/mapgair

would result in 15 magnetograms from MDI and 15 from HMI from 1 May 2008 in the dataset
referenced through the command line keyword “in”.

In this way, the “@filename” construct acts like an “include” file – at the top level (e.g. the
command line in the example above) @ filename causes the datasets specified within
filename to be included into the dataset specified at the top level. At this point, there are
checks neither on stack overflow (which could arise if @file1 contains @file2, @file2
contains @file3, …, with a sufficient number of files in the chain) nor on cyclical
dependencies (which can cause infinite recursion, eg., @file1 contains @file2, and @file2
contains @file1), so please be careful!

In DSDS, a dataset specified by a series name and series number corresponded to a directory
on disk. This directory would contain the data files for all the records in the dataset. A
dataset was the basic unit of data in DSDS, whereas in DRMS data is managed on a record
by record basis. In SUMS, on the other hand, data is handled on the basis of storage units
only, and one may choose (when creating a dataseries) to group the data from several records
into a single storage unit. Therefore, if the data for one record must be read from tape, for
example, then all the data in the same storage unit will be staged as well. This need not
necessarily concern the DRMS user, but it may be good to keep in mind when designing
dataseries. The difference, however, between a DSDS dataset and a storage unit in SUMS
bears emphasizing. The data contained in a DSDS dataset was related in some way, usually
corresponding to a defined period in time. The data contained in a storage unit, however,

need not have any particular relationship; a storage unit is for storage only, although it may
be common for a storage unit to contain a contiguous sequence of data. The contents of any
storage unit are created at the same time, after which time it becomes read-only. Therefore
the storage units corresponding to a given dataseries may not all have data for the same
number of records.

Record Set

A recordset is a set of records from a single series from a single catalog, and may be
described by a name appropriate to its catalog. In the description here the term “recordset” is
used interchangeably with “recordset name” where the meaning is obvious from the context.
Recordsets of differing types coming from different catalogs as described below may be
intermixed in a dataset. The first few characters of each recordset will be used to determine
the associated catalog. The rule is as follows: if a leading “{” is found it is a non-DRMS-
structured recordset2. For now, the only string that may follow “{“ is “prog:”, indicating a
DSDS dataset, but other non-DRMS catalogs may be added in the future. A recordset
leading character of “/” specifies a “plain file”. This is either a regular file, or a directory. A
regular file or a directory with a single file implies a record set with one record and one
associated file. A directory with multiple files in it implies a record set with multiple
records, and one file per record. A directory with an overview.fits file is treated as a DSDS
dataset. If the leading character is not “{“ and not “/”, then the record set is DRMS-
structured dataset.

<record_set> ::=
 <dsds_record_set> |
 <plainfile_record_set> |
 <drms_record_set>

DSDS and plain file (<plainfile_record_set>) name rules are described elsewhere.

DRMS Record Set Definition

DRMS recordsets are a subset of a single series and are specified by a series name and a
recordset specifier. If no recordset filter is present the record set consists of the entire series3.

<drms_record_set> ::= <seriesname>{<recordset_filter>}

<seriesname> ::= <namespace>.<series_specifier_name>

<namespace> ::= <name>

2 ‘{‘ and ‘}’ are necessary for non-DRMS catalogs because specifications for datasets of such catalogs may
contain characters, such as ‘,’, that are members of <dataset_sep>. Without the curly braces, such characters
would confuse the parser.
3A notable exception to this syntax is the commonly used module show_info. In that particular case at least one
set of empty square brackets is required to get the entire series. This is to reduce accidentally large queries. We
mention it here because show_info is likely to be the first module a user attempts to run.

<series_specifier_name> ::= <name>

A series name consists of two parts, the namespace (project) name and the series specifier
name. The namespace provides a private set of dataseries that can be read by all but can only
be changed by the owner of the namespace name. The owner may be an individual or a
group.

A recordset filter identifies an ordered sequence of records. The requested specific sequence
is described in a set of bracketed clauses. Each such clause selects desired records from the
dataseries given. The use of square brackets to delimit the recordset specification is to be
reminiscent of array indices in languages such as C. The records may be specified by
“record_lists” or by direct “record_queries” which specify records using an SQL “where”
clause. A record_list is a set of records identified by values of the prime index for that series
or by absolute record number. A record_list is then a set of primekey_range_sets or
recnum_range_sets. Each such list may be a comma separated set of record ranges. There
may be up to one primekey_range_set for each keyword in the prime index.

There may be zero or more record_queries. The final recordset is the logical and of the
record_queries and record_lists present. Some examples will help – see below.

<recordset_filter> ::=

 {<recordset_filter>}(<record_query>|

 <record_list>)

<record_query> ::= [!<sql_where_clause>!] |

 [?<sql_where_clause>?]

<record_list> ::= [{<primekey_name>=}<primekey_range_set>] |

 [:<recnum_range_set>]

<primekey_name> ::= <name>

<recnum_range_set> ::= <index_range_set>

<primekey_range_set> ::= <index_range_set> | <value_range_set>

<index_range_set> ::= (#^ | #$ | #<integer> |
 #<Integer>-#{@<Integer>} |
 #-#<Integer>{@<Integer>} |
 #<Integer>-#<Integer>{@<Integer>} |
 #<Integer>/<Integer>{@<Integer>}
) {,<index_range_set>}

<value_range_set> ::= (^ | $ | <value> |
 <value>-<value>{@<value_increment>} |
 <value>/<value_increment>{@<value_increment>}
) {,<value_range_set> }

Careful analysis of this rule shows that a recordset_filter is a chain of one or more “[…]”
clauses. Each of these may be a range of absolute record numbers (recnums) or an SQL
where clause or a list of values for one of the primekey components or a list of index values
along a primekey axis. For primekey_range_sets, any or all of the elements of the prime
index may be used to identify the records. Each prime index keyword gets its own “[…]”
clause. If the prime index contains more keywords than are specified, the selection will
include ALL matching records. Thus if the series is a set of lat-lon tiles as a function of time
and only a range of times is specified then the selection will include all of the lat-lon tiles for
each given time. Similarly if a subrange of one or more keywords is specified then the
selected set will include only that range for each of the primekeys. That is, a specification
acts as a filter limiting the range of records to be selected. An empty recordset_filter selects
the entire series. When multiple keywords constitute the prime index the particular keywords
used in a recordset_filter must be clear either by direct identification or by context. If
primekey_names are not given the primekey_range_sets will be matched to the components
of the prime index in the order in which they appear in the series definition of the prime
index. If a leading primekey element is not provided and subsequent elements are used
without giving their names explicitly, the leading elements must have empty “[]” sections
since the names are matched by the order in the primekey definition.

To search on a keyword that is not in the prime index, one must use an SQL query. The first
form, with “!”, performs the query directly, whereas the second form, with “?”, additionally
performs the primekey logic and returns only one record for each value of the prime index.
That is, the first form will return all versions of the specified records, and the second form
will return only the most recent version of each record. Special syntax is required when
forming a query using time strings; see the paragraph on time strings below. When creating a
dataseries, it is possible to specify keywords, in addition to the primekeys, to be indexed in
the database in order to speed up queries. This should be done whenever a non-prime
keyword will be frequently searched on. To learn more about SQL queries, please see
http://www.postgresql.org/docs/8.3/static/sql.html.

Finally, we get down to a range of records specified by a range of values of a particular
prime index component. The record range may be given as a single record, as a “first” and
“last” record in an interval, as a “first” record and duration, or for “slotted prime keywords”
as a duration. In the case of a true range, not just a single record, a minimum increment may
also be specified.

In the simplest case, a record range is a single value. For example, if a dataseries has a single
primekey named YEAR, then a recordset_filter that specifies one record might be
“[YEAR=1966]” or simply “[1966]”. The appropriate use of this construct depends on the
actual keyword data type, which includes integer, floating, and string types. Integer and
string types are easy to deal with since they compare exactly with user entered values.

Floating types however may not compare exactly depending on the computational history of
a particular value that rounds to a particular printed value. If a record is created with a
floating type primekey (named FLOATKEY, for example) whose value is 1992993985.2326,
then it is likely that a recordset_filter of “[FLOATKEY=1992993985.2326]” will NOT find
the record ingested. There are two solutions for dealing with the problem.

First, whenever a floating type is used as a primekey, all queries could use a range to specify
the particular record(s) desired. In other words, do not use queries like
“[FLOATKEY=1992993985.2326]”; use “[FLOATKEY=1992993985-1992993986]”.
However, this is a bit inelegant and leads to the need for the second mechanism: slotting. A
“slotted prime keyword” has a floating-point data type (float, double, or time), but it is
associated with a second (and hidden) keyword whose data type is integer. Every value that
the slotted primekey could have is mapped to an integer value of the hidden keyword. In this
manner, a user could specify “FLOATKEY=1992993985.2326” and internally this query
might get changed to “FLOATKEY_index=1992993985”, where FLOATKEY_index is the
associated integer prime keyword. Essentially, the floating-point FLOATKEY axis values
are put into FLOATKEY_index “slots” of a certain width. The choice of slot width is
entirely application specific. If FLOATKEY values represent seconds since an epoch, then
perhaps the values in FLOATKEY_index represent the number of one-second slots since the
epoch. In this manner, 985.2326 and 985.7842 would map to slot number 985, but 986.3236
would map to slot number 986. In this example, there is a collision – two floating-point
numbers map to a single integer. However, if the FLOATKEY values are guaranteed to be
sufficiently “far apart” then every FLOATKEY value maps to a unique FLOATKEY_index
value. Time slotting can apply to not only “time” prime keywords, but “degree” prime
keywords (e.g., the prime keyword could be a longitude), or any other keyword whose values
can be represented by a floating point number.

With a slotted primekey, the user can then use floating-point values in value_range_sets.
“FLOATKEY=985.2326” is now a legitimate query, because under-the-hood, this query
might be changed into “FLOATKEY_index=985”. Of course, FLOATKEY_index is a bona
fide prime keyword, so the user could just as easily specify “FLOATKEY_index=235” for a
value_range_set. And as explained below, it is possible to select records via time slotted
prime keywords by specifying a duration (e.g., 60s for 60 seconds, or 96m for 96 minutes,
etc.), like “FLOATKEY=96m”, or simply “96m” if the actual keyword to be searched is
implied. Please see more about slotted keywords in the Slotted Axes section to follow.

Any keyword may be of type time. The usual DRMS format for a time string is
YYYY.MM.DD_hh:mm:ss.dd_ZONE, where dd represents fractional seconds. Internally,
times are stored as the double precision number of seconds since 1977.01.01_00:00:00_TAI.
Trailing parts of a time string may be omitted, in which case the missing fields default to
obvious values. The ZONE defaults to UTC. Other formats are allowed; for a full
specification see http://jsoc/jsocwiki/JsocTimes. (needs updating) If one wants to use a time
string in a record_query, they should use the following syntax: $(<time_string>). This is
necessary because it will cause the time string to be converted to the internal format before
being submitted to the database. For example, one might form the query
“mdi.fd_M_96m_lev18[? T_REC >= $(1996.05.02_TAI) AND

http://jsoc/jsocwiki/JsocTimes

T_REC <$(1996.05.03_TAI) ?]”.

In addition to specifying single values, a primekey_range_set may contain a range of values.
A record interval is a “dash”-separated first and last axis value or axis index value. An
interval expressed this way is “closed” on both ends. In other words, if the range is “19-27”,
then there are 9 records specified. In the case of a primekey of type time (NOT a slotted time
keyword though) an interval may be a set of records starting at a given axis value or axis
index value and continuing “over” an interval of specified duration. An interval expressed
this way is closed on the end earliest in time, and open at the other end. For example, if the
interval is “2007.12.25_00:00:00-2007.12.25_01:00:00”, and observations occur every
minute, then there are 60 records specified (2007.12.25_00:00:00, 2007.12.25_00:01:00,
2007.12.25_00:02:00, …, 2007.12.25_00:59:00). The same set of records can be specified
by the interval “2007.12.25_00:00:00/1h”. (what about other floating-point types?)

If the primekey is a slotted time keyword, then the interval is closed both at its beginning and
end. For example, if the interval is “2007.12.25_00:00:00/1m”, and time slots are 10 seconds
wide, then 7 records are specified (slots 0, 1, 2, 3, 4, 5, 6). For slotted time primekeys, there
is one other method for specifying an interval: the beginning time may be specified as an
offset from the reference epoch given in the series definition. For example, if the reference
epoch were 2007.12.01_00:00:00, then “[24d/1m]” will specify the same interval as
“[2007.12.25_00:00:00/1m]” which is also the same as “[2007.12.25_00:00:00 -
2007.12.25_00:01:00]”. Likewise, one may specify a single instant in time as an offset from
the epoch. This method will also work for floating-point slotted primekeys of other types.

An example of full disk MDI magnetograms in the DRMS catalog for say 17 March 2005
would be:

mdi.fd_M_96m[2005.05.17/1d]

Note here that omitted time parts (hours, minutes, seconds) all default to zero. Then using the
axis offset/axis duration method described below we could have:

mdi.fd_V_lev18[3000d/1d]

which would mean the records for the day 3000 in the MDI epoch. In the DSDS catalog this
would be specified as:

prog:mdi,level:lev1.8,series:fd_V_01h[72000-72023]

The epoch default is defined in the series definition (see below). In the DSDS case the above
spec expands to 24 datasets of 60 records each. In the DRMS case it expands to 1440
records. Of course the DRMS spec could just as well have been:

mdi.fd_V_lev18[72000h/24h]

The optional increment defines a minimum step to allow undersampling of the target data
series. Note this is unwise for oscillation studies which are observed with critical sampling.
However a 27-day interval of 96-minute spaced magnetograms from HMI could be expressed
as:

hmi.fd_M_lev1[2008.05.01/27d@96m]

or equivalently as
hmi.d_M_lev1[2008.05.01-2008.05.26_22h:24m@96m]

As can be seen in the examples here, there are several ways to specify a particular record.
The above examples also hint at implied special knowledge about the type of the primekey
values. This issue is discussed below.

Thus individual records may be specified in several ways: by axis value, which is an explicit
keyword value along a primekey axis; by specifying an axis offset since the series epoch
along the primekey axis; by axis index value, which is an integer specifying the record(s) at
the nth position along a primekey axis. These will be described in order below.

Axis Value

An explicit absolute value on a prime index axis may be specified. Some rules apply
depending on the variable type of the prime keyword. These are as follows:

1. Integer types. No particular restrictions. The min and max values are restricted to the
min and max allowed values for the associated data type. The integer types and limits
are:

a. char -128 127
b. short -32768 32767
c. int -2^31 2^31-1
d. longlong -2^63 2^63-1

2. Floating point types. These are IEEE standard float and double types as 32-bit and
64-bit values. A printing conversion format is provided for all keywords and in the
floating case this usually provides a limited precision to show the user. Since the
database lookup uses exact bit matches and floating point values printed in limited
precision involve rounding, the actual bit value may differ depending on the
computation that is used to get a value. Thus whenever floating-type keywords are
used as prime keys it may be necessary to specify a range to identify the particular
record(s) desired. We advise, however, that all floating type primekeys be slotted.
This alleviates the need to specify a range, as discussed above.

3. String types. These are ASCII strings which may contain blanks and other
punctuation. If they contain no whitespace, quotation is not needed. Comparisons
are case-sensitive.

4. Time. Times are a valid DRMS keyword type. Times are stored internally as doubles
and thus are subject to the same warnings as other floating point types. An extra
service is provided in the case of times in that DRMS defines both “internal” and
“external” representations of times. The external form is the standard JSOC time
format (see http://jsoc.stanford.edu/jsocwiki/JsocTimes) such as
2009.01.20_17:00_UT. The internal form is seconds since the JSOC epoch of
1977.01.01_00:00:00.0_TAI which is 1976.12.31_23:59:45.000_UT. Times are by
default given in UTC.

One may also specify a range of primekey values to be returned using the ”[<value>-
<value>]” notation, even in the case of strings, which are stored in their alphanumeric order.
An interval of strings or integers is closed on both ends, but an interval of a floating type,
however, is closed on its beginning and open on its end, as noted above. Note also, however,

that if a floating type primekey is slotted, then the true primekey is an integer, and so the
interval will be closed on both ends.

Another way to specify a range is to give the beginning of the interval and its length using
the “[<value>/<value_increment>]” notation. This is equivalent to the above, except for
strings, where <value_increment> is meaningless. For slotted primekeys, one may also use
the notation “[<value_increment>/<value_increment>]” where the beginning of the interval
is given by an offset from the base given in the series definition. For slotted primekeys of
type time, the base will be the reference epoch. Value_increments must obey the following
grammar:

<value_increment> ::= <integer> | <real> | <time_increment>
<time_increment> ::= <real><time_increment_specifier>
<time_increment_specifier> ::= s | m | h | d

Whenever a time_increment specifier is missing, seconds are assumed.

Finally, one may append “@<value_increment>” to any interval to specify a minimum step
along a particular primekey axis. This is the same as giving a comma-separated list of
values. For example, “[5-10@2]” is equivalent to [5,7,9].

The special values “^” and “$” refer to the smallest (first) and largest (last) value,
respectively, of the current primekey. They cannot be used in ranges, however, so they are
usually used to select a single record. The use of this notation will be discussed in the next
section.

Axis Index Value

Axis index values are intended to be used with integer primekeys. Recall, however, that if a
floating-point primekey is slotted, then the floating-point values get mapped to integer
values. The integer keyword containing these values becomes the true primekey. Since it is
highly advised to use slotting for all floating type primekeys, axis index values are a quite
general way to specify records. A recordset_filter of “[#n]” using an axis index value is
equivalent to a recordset_filter of “[x]” using the actual value of the primekey according to
this formula: x = n * step + base, where step defaults to 1, and base defaults to 0. If desired,
these defaults can be overridden in the series definition by defining constant keywords
KEY_step and KEY_base where KEY is the name of the keyword to which these values will
apply. This is not permitted, however, for slotted primekeys. In that case, the primekey
would be KEY_index and step and base would automatically be set to their default values.
KEY_index_base and KEY_index_step, while allowed as keywords, will not be used for this
purpose.

Hence, by default, x = n for integers. For a slotted floating type primekey, say FLOATKEY,
if one uses the “[#n]” notation, it will refer to the actual keyword FLOATKEY_index. The
relation between FLOATKEY and FLOATKEY_index will be described in the next section.

If a floating type primekey is not slotted, which is strongly discouraged, then one may not
use axis index values. (what about strings?)

(insert examples.)

One may also specify ranges using axis index notation just as with axis value notation. In the
recordset_filter “[#<integer>-#<integer>]”, either integer may be omitted. If the first, the
beginning of the interval is taken to be the smallest axis index present; if the second, the end
of the interval is taken to be the largest axis index present. Intervals specified with “/” and
“@” behave in exact analogy to the axis value notation.

The special values “^” and “$” refer to the smallest and largest existing index values for the
current axis. Hence, for integers and slotted primekeys, “[#^]” is exactly equivalent to “[^]”,
and “[#$]” is exactly equivalent to “[$]”. The only possible difference is in the case of non-
slotted floating type primekeys. In this case, the “[#^]” and “[#$]” notation is not allowed.
(so is the index a predefined keyword?)

For a series with multiple primekeys, “^” and “$” have a slightly different meaning. The
recordset_filter “[#$][#$]” means to find the record(s) with the largest axis index value for
the first primekey, then out of those records, find the record(s) with the largest axis index
value for the second primekey. If there are only two primekeys, this will result in a single
record. Note that a recordset_filter like “[#<max_index_value_1>][#<max_index_value_2]”
would not necessarily return any records, but “[#$][#$]” always will as long as a record
exists. To find the record(s) with the overall largest axis index value for the second
primekey, one could use the recordset_filter “[][#$]”. There is no way to use this notation to
specify the record(s) with the largest axis index value for the first primekey given the
maximum axis index value for the second primekey, but one may find such a recordset using
an SQL where clause in a record_query.
(what about [KEYNAME2=#$][KEYNAME1=#$]?)

Slotted Axes

For all slotted prime index keywords several ancillary keywords must be defined along with
the prime keyword itself. These keywords must be explicitly described in the series
definition (see jsd discussion in the JSOC wiki at http://jsoc.stanford.edu/jsocwiki/Jsd).
These ancillary keys must be defined as constant keywords, ie., for each, there can be only
one value for the entire series. There are several “types” of slotted keywords supported. The
list of types may be extended but at present includes two types of equally spaced time series
(TS_EQ and TS_SLOT), general slotted values (SLOT), and Carrington rotation and
longitudes (CARR). In all cases the ancillary keyword names are formed by adding a suffix
to the base prime keyword name. To define a slotted keyword in the jsd, the “record scope”
field must specify one of the slotted keyword types (eg., “ts_eq”). If the jsd parser
encounters such a keyword, it will ensure that the required ancillary keywords (like,
XXXX_epoch, XXXX_step, and XXXX_unit) are also specified, or parsing will fail. If
parsing succeeds, then for each recognized primary keyword, a new “index” keyword is
created, with a name XXXX_index. This keyword is of type integer, the values for this

keyword are slot numbers, and is the actual keyword used as the primary keyword in the
DRMS database.

For each slotted prime keyword type with a base name of XXXX, the ancillary keywords
required to be defined in the jsd are given in the following table:

Type = TS_EQ
XXXX_epoch Base epoch for axis. Can be a DRMS time, or a DRMS string (if it refers to

a named standard epoch). The epoch will be the center of slot 0.
XXXX_step Time duration defining the width of each slot. Can be a DRMS float or

double, in which case the unit of the duration (eg., seconds, minutes, hours,
days, etc.) is specified by XXXX_unit, or can be a DRMS string. If the
latter, then the string combines the numerical and unit values (for example,
60s refers to a step of 60 seconds.), and XXXX_unit is not required, or
ignored if present.

XXXX_unit String containing the units of the time duration specified in XXXX_step,
provided that XXXX_step is not of type DRMS string. Examples are “secs”,
“mins”, “hours”, “days”. This keyword may be omitted, in which case a unit
of seconds is assumed. (what other strings are allowed? “s”? “seconds”?)

Type = TS_SLOT
XXXX_epoch As above, but now epoch marks the beginning of slot 0.
XXXX_step As above.
XXXX_unit As above.
XXXX_round A DRMS float or double giving a number of seconds that represents the

uncertainty in the slot boundaries. This can often be set to 0.
Type = SLOT – NOT SURE WHY THERE IS A XXXX_unit.
XXXX_base Base reference value for axis; axis_offsets are relative to this value. Can be

a DRMS float or double.
XXXX_step Interval defining the width of each slot. Can be a DRMS float or double, in

which case the unit of this number is specified by XXXX_unit, or can be a
DRMS string. If the latter, then the string combines the numerical and unit
values (for example, 60tribbles), and XXXX_unit is not required, or ignored
if present. When calculating slot numbers, the unit of the step is assumed to
be the unit of the base, so there is never any utilitarian reason for specifying
a step unit.

XXXX_unit Units of step. Since this is arbitrary (eg., can be “tribbles”) not used for
calculating slot numbers. This keyword value is only informational. This
keyword is not optional.

Type = CARR
XXXX_step Degree interval defining the width of each slot. Can be a DRMS float or

double, in which case the unit of the interval (eg., degrees, arcminutes,
arcseconds, milliarcseconds, radians, microradians, etc.) is specified by
XXXX_unit, or can be a DRMS string. If the latter, then the string
combines the numerical and unit values (for example, 10ms refers to a step
of 10 milliarcseconds.), and XXXX_unit is not required, or ignored if
present.

XXXX_unit Units of the degree interval specified in XXXX_step, provided that
XXXX_step is not of type DRMS string. Can be a string (eg., “degrees”,
“arcmins”, “arcsecs”, “milliarcsecs”, “rads”, “microrads”, etc.). This
keyword may be omitted, in which case a unit of degrees is assumed.

Below follows a brief description of each type of slotting, as well as the formulas showing
how the XXXX_index keyword is generated using the XXXX keyword and ancillary
keywords. For simplicity, we shall assume that all keywords for each type of slotting are
given in the same units.

(WILL NEED A DIAGRAM HERE TO SHOW THE DIFFERENCE BETWEEN TS_EQ
AND TS_SLOT)

TS_EQ:

This type is intended to be used for timeseries of observables such as Dopplergrams. The
XXXX keyword is expected to give the nominal time of observation, but the actual time of
observation extends from half a slot width before to half a slot width after this time. Hence,

XXXX_index = (XXXX – XXXX_epoch + XXXX_step/2)/XXXX_step

XXXX_step will therefore correspond to the cadence of observations.

TS_SLOT:

This type is intended to be used for a dataseries where each record corresponds to a
timeseries of fixed duration. An example would be 36 day timeseries of spherical harmonic
coefficents at a cadence of 1 minute. The formula for XXXX_index now becomes

XXXX_index = (XXXX – XXXX_epoch + XXXX_round/2)/XXXX_step

Now XXXX_step will refer to the duration of the timeseries, and XXXX_round will refer to
the cadence within the timeseries. So in the above example, XXXX_step = ‘36days’ and
XXXX_round = ‘1min’. Note that XXXX_round usually means the same thing as
XXXX_step does for TS_EQ, but it is often safe to set XXXX_round to 0.

SLOT:

XXXX_index = (XXXX – XXXX_base + XXXX_step/2)/XXXX_step

CARR:

XXXX_index = (XXXX – CARR0 + XXXX_step/2)/XXXX_step

For the CARR type of slotted primekey, axis values can be specified in one of two formats:
as a Carrington Time, CT:<Carrington Time> (eg., CT:722160.263), or as a Carrington
Rotation-Carrington Longitude pair, CRCL:<rotation number>:<degrees> (eg., CRCL:
2000:20). Need to modify sscan_time() and sprint_time() in timeio.c to recognize these new
formats, and convert the results into TIME. Internally, CARR slotted keywords will have
type TIME (DRMS_TYPE_TIME). The defined format for type TIME needs to be expanded
to include “CT” and “CRCL”. These should operate in a manner analogous to format
“UTC”. The base time used for slotting is always WSO/MDI Carrtime=0, so there is no need
to provide a XXXX_base keyword.

For all slotted axis calculations involving intervals, the mapping to slot number is such that if
the beginning of the interval falls within a slot, then the interval contains all of that slot. If
the end of the interval falls within a slot, then the interval contains all of that slot.

Standard Epochs for slotted time axes

The XXXX_epoch keyword values (for TS_EQ and TS_SLOT type slotted primekeys only)
can be expressed (in the jsd) directly as a time string, or as a predefined standard epoch
string:

<epoch_keyword_value> ::= <time_string> | <standard_epoch>

<standard_epoch> ::=

“JSOC_EPOCH” |

“MDI_EPOCH” |

“WSO_EPOCH” |

“TAI_EPOCH” |

“MJD_EPOCH”

Where:

JSOC_EPOCH 1977.01.01_00h:00m:00s_TAI
MDI_EPOCH 1993.01.01_00h:00m:00s_TAI
WSO_EPOCH 1601.01.01_00h:00m:00s_UT
TAI_EPOCH 1958.01.01_00h:00m:00s_TAI
MJD_EPOCH 1858.11.17_00h:00m:00s_UT

Versions

In the JSOC DRMS for dataseries with primekeys defined (almost all series) the always
present absolute record number (recnum) is used to track the most recent version of each
record. All records with the same primekey values are treated as different versions of the
same record. Each time a record is added to a dataseries, recnum is incremented. So for

each set of records with the same primekey values the one with the highest recnum value is
the most recent one added and is then the current version.

Since records can be selected in several ways the interaction of the version logic with the
selection specification must be understood if the desired results are to be obtained. The basic
rule is that the version check is made when at least one primekey filter or a “[? ... ?]” clause
is provided. Since each selection clause adds to the record selection filtering in the sense of a
logical AND the filtering can be done in any order. Since it is hugely more efficient in the
database to first select based on indexed quantities, and the primekeys are always indexed,
the selection based on primekeys is done first. After the primekey selection is done, the
highest version is selected. Only then are any general record_query clauses executed.

If only recnum_ranges and “[! ... !]” clause are given, then the version checking is not done.
This can lead to some unexpected results. Suppose a series has only 2 keywords, A and B
with A as the only prime key. Now suppose there are only a few records containing:

Recnum A B
1 50 red
2 51 blue
3 51 pink
4 52 white
5 53 blue

The query [50-53] will yield records 1,3,4,5.
The query [? B=’blue’ ?] returns records 2 and 5 but
The query [][? B=’blue’ ?] returns only record 5

In general the more the request can be limited by specifying a range of prime keys the better.
The performance difference can be dramatic as in 30 minutes vs 30 ms in the case of our
expected largest series (2 second cadence for 5 years).

NOTE on record_query “where” clauses

The query in the [! … !] is passed directly to the PostgreSQL processor as the contents
following the word “where”. So, the PostreSQL query rules apply. One thing of note is that
for matches to string constants the constant must be enclosed in single quotes as in the
example above. The query syntax allowed can be quite complex since a where clause may
contain embedded sub-queries. For example the following csh command correctly finds the
most recent “PCU” file before the time of the current image (IMAGE_SECS):

set PCU_INFO = `show_keys "ds=hmi_ground.test_config_files[? recnum = (select recnum from
hmi_ground.test_config_files where type = 'pcu' and date <= $IMAGE_SECS order by date desc,
recnum desc limit 1) ?]" -p -q key=date seg=file `

